У меня есть существующее распределение значений, и я хочу нарисовать выборки размером 5, но эти 5 выборок должны иметь стандартное отклонение X в некотором допуске. Например, мне нужно 5 сэмплов, у которых стандартное отклонение равно 10 (хотя общее распределение равно std = ~ 32).
Приведенный ниже пример кода несколько работает, но довольно медленно для большого набора данных. Он случайным образом выбирает распределение, пока не находит что-то близкое к целевому стандартному стандарту, а затем удаляет эти элементы, чтобы они не могли быть отрисованы снова.
Есть ли более разумный способ сделать это правильно и быстрее? Это работает нормально для некоторых target_std (выше 6), но не точно ниже 6.
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(23)
# Create a distribution
d1 = np.random.normal(95, 5, 200)
d2 = np.random.normal(125, 5, 200)
d3 = np.random.normal(115, 10, 200)
d4 = np.random.normal(70, 10, 100)
d5 = np.random.normal(160, 5, 200)
d6 = np.random.normal(170, 20, 100)
dist = np.concatenate((d1, d2, d3, d4, d5, d6))
print(f"Full distribution: len={len(dist)}, mean={np.mean(dist)}, std={np.std(dist)}")
plt.hist(dist, bins=100)
plt.title("Full Distribution")
plt.show();
batch_size = 5
num_batches = math.ceil(len(dist)/batch_size)
target_std = 10
tolerance = 1
# how many samples to search
num_samples = 100
result = []
# Find samples of batch_size that are closest to target_std
for i in range(num_batches):
samples = []
idxs = np.arange(len(dist))
for j in range(num_samples):
indices = np.random.choice(idxs, size=batch_size, replace=False)
sample = dist[indices]
std = sample.std()
err = abs(std - target_std)
samples.append((sample, indices, std, err, np.mean(sample), max(sample), min(sample)))
if err <= tolerance:
# close enough, stop sampling
break
# sort by smallest err first, then take the first/best result
samples = sorted(samples, key=lambda x: x[3])
best = samples[0]
if i % 100 == 0:
pass
print(f"{i}, std={best[2]}, err={best[3]}, nsamples={num_samples}")
result.append(best)
# remove the data from our source
dist = np.delete(dist, best[1])
df_samples = pd.DataFrame(result, columns=["sample", "indices", "std", "err", "mean", "max", "min"])
df_samples["err"].plot(title="Errors (target_std - batch_std)")
batch_std = df_samples["std"].mean()
batch_err = df_samples["err"].mean()
print(f"RESULT: Target std: {target_std}, Mean batch std: {batch_std}, Mean batch err: {batch_err}")