Это своего рода продолжение до моего предыдущего вопроса об оценке моего регрессора гауссовских процессов scikit. Я очень плохо знаком с GPR и думаю, что могу допустить методологическую ошибку в том, как я использую данные обучения и тестирования.
По существу, мне интересно, в чем разница между указанием данных тренировки путем разделения ввода между данными теста и тренировкой, например так:
X = np.atleast_2d(some_data).T
Y = np.atleast_2d(other_data).T
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size = 0.33,
random_state = 0)
kernel = ConstantKernel() + Matern() + WhiteKernel(noise_level=1)
gp = gaussian_process.GaussianProcessRegressor(
alpha=1e-10,
copy_X_train=True,
kernel = kernel,
n_restarts_optimizer=10,
normalize_y=False,
random_state=None)
gp.fit(X_train, y_train)
score = gp.score(X_test, y_test)
print(score)
x_pred = np.atleast_2d(np.linspace(0,10,1000)).T
y_pred, sigma = gp.predict(x_pred, return_std=True)
против использования полного набора данных для обучения, подобного этому ,
X = np.atleast_2d(some_data).T
Y = np.atleast_2d(other_data).T
kernel = ConstantKernel() + Matern() + WhiteKernel(noise_level=1)
gp = gaussian_process.GaussianProcessRegressor(
alpha=1e-10,
copy_X_train=True,
kernel = kernel,
n_restarts_optimizer=10,
normalize_y=False,
random_state=None)
gp.fit(X, Y)
score = gp.score(X, Y)
print(score)
x_pred = np.atleast_2d(np.linspace(0,10,1000)).T
y_pred, sigma = gp.predict(x_pred, return_std=True)
Не приведет ли один из этих вариантов к неверным прогнозам?