У меня есть набор данных в формате паркета, подобный этому:
parquetFile.toDF().registerTempTable("tempTable")
val PDataFrame = sqlContext.sql("SELECT * FROM tempTable")
PDataFrame.show()
+--------------------+--------------------+-------------------+-----+--------+-------------------+--------------------+
| _id| VehicleDetailId| PlanID| Type| SubType| CreatedOn| Date|
+--------------------+--------------------+-------------------+-----+--------+-------------------+--------------------+
|[($oid,5cc8e1a72f...|[($numberLong,219...|[($numberLong,164)]|Quote|Response|5/1/2019 5:30:39 AM|[($date,155666883...|
|[($oid,5cc8e1a72f...|[($numberLong,219...|[($numberLong,168)]|Quote|Response|5/1/2019 5:30:39 AM|[($date,155666883...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,102)]| IDV| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,105)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,112)]|Quote| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,134)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,114)]|Quote| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,115)]|Quote| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,113)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,185)]|Quote| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,108)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,149)]|Quote| Request|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,135)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,167)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,116)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,156)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,125)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,102)]| IDV|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,144)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
|[($oid,5cc8e1ac2f...|[($numberLong,219...|[($numberLong,171)]|Quote|Response|5/1/2019 5:30:44 AM|[($date,155666884...|
+--------------------+--------------------+-------------------+-----+--------+--------------------+-------------------+--------------------+
only showing top 20 rows
Схема этого набора данных:
PDataFrame.printSchema()
root
|-- _id: struct (nullable = true)
| |-- $oid: string (nullable = true)
|-- VehicleDetailId: struct (nullable = true)
| |-- $numberLong: string (nullable = true)
|-- PlanID: struct (nullable = true)
| |-- $numberLong: string (nullable = true)
|-- Type: string (nullable = true)
|-- SubType: string (nullable = true)
|-- CreatedOn: string (nullable = true)
|-- Date: struct (nullable = true)
| |-- $date: string (nullable = true)
Я пытаюсь написать код Spark SQL, используя Scala для чтения данных по значению PlanID
в предложении where. Вот почему я хочу использовать запрос SQL по Spark SQL. Вот моя ожидаемая структура вывода (примерное представление из 10 строк)
+-----------------------+--------------------+-------+-----+--------+-------------------+--------+
| _id| VehicleDetailId| PlanID| Type| SubType| CreatedOn| Date|
+-----------------------+--------------------+-------+-----+--------+-------------------+--------+
5ae7ae00b07ccf35c020e5ba|10220998|135|Quote|Response|5/1/2018 5:30:00 AM|1525132800096
5ae7ae00b07ccf35c020e5bb|10220998|134|Quote|Response|5/1/2018 5:30:00 AM|1525132800139
5ae7ae00b07ccf35c020e5bc|10220998|104|Quote|Response|5/1/2018 5:30:00 AM|1525132800516
5ae7ae00b07ccf35c020e5bd|10220998|104|Quote|Response|5/1/2018 5:30:00 AM|1525132800519
5ae7ae00b07ccf35c020e5be|10220998|101|Quote|Response|5/1/2018 5:30:00 AM|1525132800539
5ae7ae00b07ccf35c020e5bf|10220998|103|IDV|Request|5/1/2018 5:30:00 AM|1525132800546
5ae7ae00b07ccf35c020e5c0|10220998|105|Quote|Response|5/1/2018 5:30:00 AM|1525132800577
5ae7ae00b07ccf35c020e5c1|10220998|103|IDV|Request|5/1/2018 5:30:00 AM|1525132800581
5ae7ae00b07ccf35c020e5c2|10220998|103|IDV|Response|5/1/2018 5:30:00 AM|1525132800702
5ae7ae00b07ccf35c020e5c3|10220998|128|Quote|Response|5/1/2018 5:30:00 AM|1525132800709
Теперь я попытался с различным подходом получить ожидаемый результат, например:
PDataFrame.withColumn("first", $"PlanID.$$numberLong").show
ИЛИ
sqlContext.sql(s""" select _id["$$oid"] as col1, PlanID["$numberLong"] as col2 from tempTable """)
К сожалению, я не могу достичь ожидаемого результата. Любая помощь будет высоко оценена.