В настоящее время я пытаюсь внедрить свою собственную нейронную сеть с нуля, чтобы проверить мое понимание метода. Я думал, что все идет хорошо, так как моей сети удалось аппроксимировать функции AND и XOR без проблем, но оказывается, что у нее возникают проблемы с обучением приближению простой квадратной функции.
Я пытался использовать множество различных сетевых конфигураций, с 1 до 3 уровнями и 1-64 узлами. Я изменил скорость обучения от 0,1 до 0,00000001 и применил снижение веса, так как думал, что некоторая регуляризация может дать некоторое представление о том, что пошло не так. Я также реализовал проверку градиента, которая дает мне противоречивые ответы, так как она сильно варьируется от попытки к попытке, варьируя от ужасной разницы 0,6 до фантазии c 1e-10. Я использую функцию активации ReLU с утечками и MSE в качестве функции стоимости.
Может ли кто-нибудь помочь мне определить, что мне не хватает? Или это исключительно из-за оптимизации гиперпараметров?
Мой код выглядит следующим образом:
import matplotlib.pyplot as plt
import numpy as np
import Sub_Script as ss
# Create sample data set using X**2
X = np.expand_dims(np.linspace(0, 1, 201), axis=0)
y = X**2
plt.plot(X.T, y.T)
# Hyper-parameters
layer_dims = [1, 64, 1]
learning_rate = 0.000001
iterations = 50000
decay = 0.00000001
num_ex = y.shape[1]
# Initializations
num_layers = len(layer_dims)
weights = [None] + [np.random.randn(layer_dims[l], layer_dims[l-1])*np.sqrt(2/layer_dims[l-1])for l in range(1, num_layers)]
biases = [None] + [np.zeros((layer_dims[l], 1)) for l in range(1, num_layers)]
dweights, dbiases, dw_approx, db_approx = ss.grad_check(weights, biases, num_layers, X, y, decay, num_ex)
# Main function: Iteration loop
for iter in range(iterations):
# Main function: Forward Propagation
z_values, acts = ss.forward_propagation(weights, biases, num_layers, X)
dweights, dbiases = ss.backward_propagation(weights, biases, num_layers, z_values, acts, y)
weights, biases = ss.update_paras(weights, biases, dweights, dbiases, learning_rate, decay, num_ex)
if iter % (1000+1) == 0:
print('Cost: ', ss.mse(acts[-1], y, weights, decay, num_ex))
# Gradient Checking
dweights, dbiases, dw_approx, db_approx = ss.grad_check(weights, biases, num_layers, X, y, decay, num_ex)
# Visualization
plt.plot(X.T, acts[-1].T)
С Sub_Script.py, содержащим функции нейронной сети:
import numpy as np
import copy as cp
# Construct sub functions, forward, backward propagation and cost and activation functions
# Leaky ReLU Activation Function
def relu(x):
return (x > 0) * x + (x < 0) * 0.01*x
# Leaky ReLU activation Function Gradient
def relu_grad(x):
return (x > 0) + (x < 0) * 0.01
# MSE Cost Function
def mse(prediction, actual, weights, decay, num_ex):
return np.sum((actual - prediction) ** 2)/(actual.shape[1]) + (decay/(2*num_ex))*np.sum([np.sum(w) for w in weights[1:]])
# MSE Cost Function Gradient
def mse_grad(prediction, actual):
return -2 * (actual - prediction)/(actual.shape[1])
# Forward Propagation
def forward_propagation(weights, biases, num_layers, act):
acts = [[None] for i in range(num_layers)]
z_values = [[None] for i in range(num_layers)]
acts[0] = act
for layer in range(1, num_layers):
z_values[layer] = np.dot(weights[layer], acts[layer-1]) + biases[layer]
acts[layer] = relu(z_values[layer])
return z_values, acts
# Backward Propagation
def backward_propagation(weights, biases, num_layers, z_values, acts, y):
dweights = [[None] for i in range(num_layers)]
dbiases = [[None] for i in range(num_layers)]
zgrad = mse_grad(acts[-1], y) * relu_grad(z_values[-1])
dweights[-1] = np.dot(zgrad, acts[-2].T)
dbiases[-1] = np.sum(zgrad, axis=1, keepdims=True)
for layer in range(num_layers-2, 0, -1):
zgrad = np.dot(weights[layer+1].T, zgrad) * relu_grad(z_values[layer])
dweights[layer] = np.dot(zgrad, acts[layer-1].T)
dbiases[layer] = np.sum(zgrad, axis=1, keepdims=True)
return dweights, dbiases
# Update Parameters with Regularization
def update_paras(weights, biases, dweights, dbiases, learning_rate, decay, num_ex):
weights = [None] + [w - learning_rate*(dw + (decay/num_ex)*w) for w, dw in zip(weights[1:], dweights[1:])]
biases = [None] + [b - learning_rate*db for b, db in zip(biases[1:], dbiases[1:])]
return weights, biases
# Gradient Checking
def grad_check(weights, biases, num_layers, X, y, decay, num_ex):
z_values, acts = forward_propagation(weights, biases, num_layers, X)
dweights, dbiases = backward_propagation(weights, biases, num_layers, z_values, acts, y)
epsilon = 1e-7
dw_approx = cp.deepcopy(weights)
db_approx = cp.deepcopy(biases)
for layer in range(1, num_layers):
height = weights[layer].shape[0]
width = weights[layer].shape[1]
for i in range(height):
for j in range(width):
w_plus = cp.deepcopy(weights)
w_plus[layer][i, j] += epsilon
w_minus = cp.deepcopy(weights)
w_minus[layer][i, j] -= epsilon
_, temp_plus = forward_propagation(w_plus, biases, num_layers, X)
cost_plus = mse(temp_plus[-1], y, w_plus, decay, num_ex)
_, temp_minus = forward_propagation(w_minus, biases, num_layers, X)
cost_minus = mse(temp_minus[-1], y, w_minus, decay, num_ex)
dw_approx[layer][i, j] = (cost_plus - cost_minus)/(2*epsilon)
b_plus = cp.deepcopy(biases)
b_plus[layer][i, 0] += epsilon
b_minus = cp.deepcopy(biases)
b_minus[layer][i, 0] -= epsilon
_, temp_plus = forward_propagation(weights, b_plus, num_layers, X)
cost_plus = mse(temp_plus[-1], y, weights, decay, num_ex)
_, temp_minus = forward_propagation(weights, b_minus, num_layers, X)
cost_minus = mse(temp_minus[-1], y, weights, decay, num_ex)
db_approx[layer][i, 0] = (cost_plus - cost_minus)/(2*epsilon)
dweights_flat = [dw.flatten() for dw in dweights[1:]]
dweights_flat = np.concatenate(dweights_flat, axis=None)
dw_approx_flat = [dw.flatten() for dw in dw_approx[1:]]
dw_approx_flat = np.concatenate(dw_approx_flat, axis=None)
dbiases_flat = [db.flatten() for db in dbiases[1:]]
dbiases_flat = np.concatenate(dbiases_flat, axis=None)
db_approx_flat = [db.flatten() for db in db_approx[1:]]
db_approx_flat = np.concatenate(db_approx_flat, axis=None)
d_paras = np.concatenate([dweights_flat, dbiases_flat], axis=None)
d_approx_paras = np.concatenate([dw_approx_flat, db_approx_flat], axis=None)
difference = np.linalg.norm(d_paras - d_approx_paras)/(np.linalg.norm(d_paras) +
np.linalg.norm(d_approx_paras))
if difference > 2e-7:
print(
"\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
else:
print(
"\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
return dweights, dbiases, dw_approx, db_approx
Изменить: Внесены некоторые исправления в некоторые старые комментарии, которые у меня были в коде, чтобы избежать путаницы
Редактировать 2: Спасибо @ sid_508 за помощь в поиске основной проблемы с моим кодом! В этом издании я также хотел упомянуть, что обнаружил некоторую ошибку в том, как я реализовал снижение веса. После внесения предложенных изменений и полного удаления элемента снижения веса, нейронная сеть работает!