Я попытался повторить вашу проблему и смог успешно соответствовать модели, вы можете следовать приведенному ниже коду, который соответствует вашей архитектуре, были некоторые незначительные проблемы с формами слоя Embedding, я включил веса для слоя встраивания с использованием перчаточного встраивания, также упомянуты детали для матрицы вложения ниже.
embedding_layer = Embedding(num_words, EMBEDDING_SIZE, weights=[embedding_matrix], input_length=max_input_len)
encoder_inputs_placeholder = Input(shape=(max_encoder_seq_length,))
x = embedding_layer(encoder_inputs_placeholder)
encoder = LSTM(LSTM_NODES, return_state=True)
encoder_outputs, h, c = encoder(x)
encoder_states = [h, c]
decoder_inputs_placeholder = Input(shape=(max_decoder_seq_length,))
decoder_embedding = Embedding(num_decoder_tokens, LSTM_NODES)
decoder_inputs_x = decoder_embedding(decoder_inputs_placeholder)
decoder_lstm = LSTM(LSTM_NODES, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs_x, initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs_placeholder,
decoder_inputs_placeholder], decoder_outputs)
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
Для матрицы встраивания:
MAX_NUM_WORDS = 10000
EMBEDDING_SIZE = 100 # you can choose 200, 300 dimensions also, depending on the embedding file you use.
embeddings_dictionary = dict()
glove_file = open(r'/content/drive/My Drive/datasets/glove.6B.100d.txt', encoding="utf8")
for line in glove_file:
records = line.split()
word = records[0]
vector_dimensions = asarray(records[1:], dtype='float32')
embeddings_dictionary[word] = vector_dimensions
glove_file.close()
num_words = min(MAX_NUM_WORDS, len(word2idx_inputs) + 1)
embedding_matrix = zeros((num_words, EMBEDDING_SIZE))
for word, index in word2idx_inputs.items():
embedding_vector = embeddings_dictionary.get(word)
if embedding_vector is not None:
embedding_matrix[index] = embedding_vector
Модель Резюме:
Model: "model_2"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_5 (InputLayer) (None, 16) 0
__________________________________________________________________________________________________
input_6 (InputLayer) (None, 59) 0
__________________________________________________________________________________________________
embedding_5 (Embedding) (None, 16, 100) 1000000 input_5[0][0]
__________________________________________________________________________________________________
embedding_6 (Embedding) (None, 59, 64) 5824 input_6[0][0]
__________________________________________________________________________________________________
lstm_4 (LSTM) [(None, 64), (None, 42240 embedding_5[0][0]
__________________________________________________________________________________________________
lstm_5 (LSTM) [(None, 59, 64), (No 33024 embedding_6[0][0]
lstm_4[0][1]
lstm_4[0][2]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 59, 91) 5915 lstm_5[0][0]
==================================================================================================
Total params: 1,087,003
Trainable params: 1,087,003
Non-trainable params: 0
![enter image description here](https://i.stack.imgur.com/66f38.png)
Надеюсь, что это решит вашу проблему, Счастливое обучение!