Я использую приведенную ниже архитектуру L eNet для обучения моей модели классификации изображений. Я заметил, что оба тренинга, точность оценки не улучшается для каждой итерации. Может ли кто-нибудь из специалистов в этой области объяснить, что могло пойти не так?
тренировочные образцы - 110 изображений, относящихся к 2 классам. проверка - 50 изображений, относящихся к 2 классам.
#LeNet
import keras
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#import dropout class if needed
from keras.layers import Dropout
from keras import regularizers
model = Sequential()
#Layer 1
#Conv Layer 1
model.add(Conv2D(filters = 6,
kernel_size = 5,
strides = 1,
activation = 'relu',
input_shape = (32,32,3)))
#Pooling layer 1
model.add(MaxPooling2D(pool_size = 2, strides = 2))
#Layer 2
#Conv Layer 2
model.add(Conv2D(filters = 16,
kernel_size = 5,
strides = 1,
activation = 'relu',
input_shape = (14,14,6)))
#Pooling Layer 2
model.add(MaxPooling2D(pool_size = 2, strides = 2))
#Flatten
model.add(Flatten())
#Layer 3
#Fully connected layer 1
model.add(Dense(units=128,activation='relu',kernel_initializer='uniform'
,kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(rate=0.2))
#Layer 4
#Fully connected layer 2
model.add(Dense(units=64,activation='relu',kernel_initializer='uniform'
,kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(rate=0.2))
#layer 5
#Fully connected layer 3
model.add(Dense(units=64,activation='relu',kernel_initializer='uniform'
,kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(rate=0.2))
#layer 6
#Fully connected layer 4
model.add(Dense(units=64,activation='relu',kernel_initializer='uniform'
,kernel_regularizer=regularizers.l2(0.01)))
model.add(Dropout(rate=0.2))
#Layer 7
#Output Layer
model.add(Dense(units = 2, activation = 'softmax'))
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
#Image Augmentation
train_datagen = ImageDataGenerator(
rescale=1./255, #rescaling pixel value bw 0 and 1
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
#Just Feature scaling
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'/Dataset/Skin_cancer/training',
target_size=(32, 32),
batch_size=32,
class_mode='categorical')
test_set = test_datagen.flow_from_directory(
'/Dataset/Skin_cancer/testing',
target_size=(32, 32),
batch_size=32,
class_mode='categorical')
model.fit_generator(
training_set,
steps_per_epoch=50, #number of input (image)
epochs=25,
validation_data=test_set,
validation_steps=10) # number of training sample
Epoch 1/25
50/50 [==============================] - 52s 1s/step - loss: 0.8568 - accuracy: 0.4963 - val_loss: 0.7004 - val_accuracy: 0.5000
Epoch 2/25
50/50 [==============================] - 50s 1s/step - loss: 0.6940 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 3/25
50/50 [==============================] - 48s 967ms/step - loss: 0.6932 - accuracy: 0.5065 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 4/25
50/50 [==============================] - 50s 1s/step - loss: 0.6932 - accuracy: 0.4824 - val_loss: 0.6933 - val_accuracy: 0.5000
Epoch 5/25
50/50 [==============================] - 49s 974ms/step - loss: 0.6932 - accuracy: 0.4949 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 6/25
50/50 [==============================] - 51s 1s/step - loss: 0.6932 - accuracy: 0.4854 - val_loss: 0.6931 - val_accuracy: 0.5000
Epoch 7/25
50/50 [==============================] - 49s 976ms/step - loss: 0.6931 - accuracy: 0.5015 - val_loss: 0.6918 - val_accuracy: 0.5000
Epoch 8/25
50/50 [==============================] - 51s 1s/step - loss: 0.6932 - accuracy: 0.4986 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 9/25
50/50 [==============================] - 49s 973ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6929 - val_accuracy: 0.5000
Epoch 10/25
50/50 [==============================] - 50s 1s/step - loss: 0.6931 - accuracy: 0.5044 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 11/25
50/50 [==============================] - 49s 976ms/step - loss: 0.6931 - accuracy: 0.5022 - val_loss: 0.6932 - val_accuracy: 0.5000
Epoch 12/25