# import the necessary packages
from keras.initializers import glorot_uniform
from keras.layers import AveragePooling2D, Input, Add
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
class SmallerVGGNet:
@staticmethod
def build(width, height, depth, classes, finalact):
X1 = Input(shape=(height, width, depth))
output = -1
# # CONV => RELU => POOL
X = Conv2D(16, (3, 3), padding="same", strides=(1, 1), name="con_layer1")(X1)
X = BatchNormalization(axis=output)(X)
X = Activation("relu")(X)
X = MaxPooling2D(pool_size=(3, 3))(X)
X = Conv2D(32, (3, 3), padding="same", strides=(2, 2), name="con_layer2")(X)
X = BatchNormalization(axis=output)(X)
X = Activation("relu")(X)
X = Conv2D(32, (3, 3), padding="same", strides=(1, 1), name="con_layer3")(X)
X = Activation("relu")(X)
X = BatchNormalization(axis=output)(X)
X = MaxPooling2D(pool_size=(3, 3))(X)
# First component
X0 = Conv2D(256, (3, 3), strides=(1, 1), padding='same', kernel_initializer=glorot_uniform(seed=0))(X)
X0 = BatchNormalization(axis=3)(X0)
X0 = Activation("relu")(X0)
# (CONV => RELU) * 2 => POOL
X = Conv2D(64, (3, 3), padding="same", strides=(2, 2), name="con_layer4")(X0)
X = BatchNormalization(axis=output)(X)
X = Activation("relu")(X)
X = Conv2D(64, (3, 3), padding="same", strides=(1, 1), name="con_layer5")(X)
X = BatchNormalization(axis=output)(X)
X = Activation("relu")(X)
X = AveragePooling2D(pool_size=(2, 2))(X)
# Second Component
X0 = Conv2D(512, (3, 3), strides=(2, 2), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X)
X0 = BatchNormalization(axis=3)(X0)
X0 = Activation("relu")(X0)
# (CONV => RELU) * 2 => POOL
X = Conv2D(128, (3, 3), padding="same", strides=(1, 1), name="con_layer6")(X1)
X = BatchNormalization(axis=3)(X)
X = Activation("relu")(X)
X = Conv2D(128, (3, 3), padding="same", strides=(2, 2), name="con_layer7")(X)
X = BatchNormalization(axis=output)(X)
X = Activation("relu")(X)
X = MaxPooling2D(pool_size=(2, 2))(X)
# Third Component
X0 = Conv2D(1024, (3, 3), strides=(2, 2), padding='valid', kernel_initializer=glorot_uniform(seed=0))(X1)
X0 = BatchNormalization(axis=3)(X0)
X0 = Dense(128, activation="relu")(X0)
X0 = Activation("relu")(X0)
X = Flatten()(X1)
X = Dense(128)(X)
X = BatchNormalization()(X)
X = Dropout(0.5)(X)
output = Dense(classes, activation=finalact)(X)
model = Model(inputs=[X1], outputs=output)
print(model.summary())
return model
ValueError: Размер отрицательного размера, вызванный вычитанием 3 из 2 для 'conv2d_2 / convolution' (op: 'Conv2D') с входными формами: [?, 2,2,64], [3,3,64,512 ].
Ошибка является причиной строки номер 50 .. при изменении значения на (X) эта ошибка возникает. Если я изменяю значение на (X1), оно запускается, но мне нужно передать значение (X)