Я сделал это очевидным образом с Numpy, и, используя размеры вашего изображения на моей маме c, это займет 300 мс. Затем я проделал то же самое с OpenCV, и он в 33 раза быстрее при 9 мс!
#!/usr/bin/env python3
import cv2
import numpy as np
# Dimensions - height, width
h, w = 2160, 2560
# Known image, channel0=1, channel1=3, channel2=5, channel3=65535
R = np.zeros((h,w,4), dtype=np.uint16)
R[...,0] = 1
R[...,1] = 3
R[...,2] = 5
R[...,3] = 65535
def npHistogram(R):
"""Generate histogram using Numpy"""
H, _ = np.histogram(R,65536)
return H
def OpenCVHistogram(R):
"""Generate histogram using OpenCV"""
H = cv2.calcHist([R.ravel()], [0], None, [65536], [0,65536])
return H
A = npHistogram(R)
B = OpenCVHistogram(R)
#%timeit npHistogram(R)
#%timeit OpenCVHistogram(R)
Результаты
Используя I Python, я получил эти значения времени
%timeit npHistogram(R)
300 ms ± 11.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit OpenCVHistogram(R)
9.02 ms ± 226 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Ключевые слова : Python, гистограмма, медленно, Numpy, гистограмма np, ускорение, OpenCV, обработка изображений.