Я написал этот небольшой код машинного обучения простой регрессии случайных лесов в классе Model. После создания объекта этого класса я напечатал прогнозы и оценку точности, а также написал код для планирования тренировок каждые 30 дней и тестирования каждые 7 дней. Но я сталкиваюсь с ошибкой
Код:
import schedule
import time
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
from main import data as df
class Model():
def __init__(self):
self.df = df
self.linear_reg = LinearRegression()
self.random_forest = RandomForestRegressor()
def split(self, test_size):
X = np.array(self.df[['age','experience','certificates']])
y = np.array(self.df['salary'])
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y, test_size = test_size, random_state = 42)
def fit(self):
self.model = self.random_forest.fit(self.X_train, self.y_train)
def predict(self):
self.result = self.random_forest.predict(self.X_test)
print(self.result)
print("Accuracy: ", self.model.score(self.X_test, self.y_test))
if __name__ == '__main__':
model_instance = Model()
model_instance.split(0.2)
schedule.every(30).days.at("05:00").do(model_instance.fit())
schedule.every(7).days.at("05:00").do(model_instance.predict())
while 1:
schedule.run_pending()
time.sleep(1)
В этой строке schedule.every(30).days.at("05:00").do(model_instance.fit())
Я получаю следующую ошибку: the first argument must be callable