def getPrediction(pred_sentences_A):
#A list to map the actual labels to the predictions
labels = ["0", "1", "2", "3", "4"]
#Transforming the test data into BERT accepted form
#input_examples = [run_classifier.InputExample(guid=None, text_a = x, text_b = y, label = 0) for x, y in zip(pred_sentences_A,pred_sentences_B)]
input_examples = [run_classifier.InputExample(guid=None, text_a = x, text_b = None, label = 0) for x in pred_sentences_A]
#Creating input features for Test data
input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer)
#Predicting the classes
predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
predictions = estimator.predict(input_fn=predict_input_fn, yield_single_examples=False)
return [(sentence_A, prediction['probabilities'], prediction['labels'], labels[prediction['labels']]) for sentence_A, prediction in zip(pred_sentences_A, predictions)]
Я удивлен, увидев, что оператор return возвращает прогноз ['вероятности'], прогноз ['метки'] и так далее, где строка кода выше который присваивает предсказания = estimator.predict, а не предсказание . Тогда как получить доступ к вероятностям и меткам? Для дальнейшего использования у меня есть функция estimator.predict ниже:
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)
# TRAIN and EVAL
if not is_predicting:
(loss, predicted_labels, log_probs) = create_model(
is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
train_op = bert.optimization.create_optimizer(
loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)
# Calculate evaluation metrics.
def metric_fn(label_ids, predicted_labels):
accuracy = tf.metrics.accuracy(label_ids, predicted_labels)
true_pos = tf.metrics.true_positives(
label_ids,
predicted_labels)
true_neg = tf.metrics.true_negatives(
label_ids,
predicted_labels)
false_pos = tf.metrics.false_positives(
label_ids,
predicted_labels)
false_neg = tf.metrics.false_negatives(
label_ids,
predicted_labels)
return {
"eval_accuracy": accuracy,
"true_positives": true_pos,
"true_negatives": true_neg,
"false_positives": false_pos,
"false_negatives": false_neg,
}
eval_metrics = metric_fn(label_ids, predicted_labels)
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
eval_metric_ops=eval_metrics)
else:
(predicted_labels, log_probs, output_layer) = create_model(
is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
predictions = {
'probabilities': log_probs,
'labels': predicted_labels,
'pooled_output': output_layer
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
# Return the actual model function in the closure
return model_fn