Я хочу найти панорамное изображение, используя матрицу гомографии. У меня есть набор картинок и картинок одинакового размера.
Во-первых, я нахожу матрицу гомографии для первых двух изображений и склеиваю их вместе. После этого я нахожу матрицу гомографии для предыдущего сшиваемого изображения и третьего изображения и повторяю этот шаг до последнего изображения.
Однако на этих шагах размеры изображения постепенно уменьшаются, и, наконец, матрица гомографии дает неверный результат.
Вот мой код:
import cv2
import numpy as np
import os
import glob
def generateRandom(src_Pts, dest_Pts, N): # This function generates random points for Ransac.
r = np.random.choice(len(src_Pts), N)
src = [src_Pts[i] for i in r]
dest = [dest_Pts[i] for i in r]
return np.asarray(src, dtype=np.float32), np.asarray(dest, dtype=np.float32)
def findH(src, dest, N): # This function calculate Homography Matrix.
A = []
for i in range(N):
x, y = src[i][0], src[i][1]
xp, yp = dest[i][0], dest[i][1]
A.append([x, y, 1, 0, 0, 0, -x * xp, -xp * y, -xp])
A.append([0, 0, 0, x, y, 1, -yp * x, -yp * y, -yp])
A = np.asarray(A)
U, S, Vh = np.linalg.svd(A)
L = Vh[-1, :] / Vh[-1, -1]
H = L.reshape(3, 3)
return H
def ransacHomography(src_Pts, dst_Pts, ransacThreshold=0.995, maxIter=1000): # This function find Homography Matrix using Ransac algorithm.
maxI = 0
maxSrcIn = []
maxDstIn = []
for i in range(maxIter):
srcP, destP = generateRandom(src_Pts, dst_Pts, 4)
H = findH(srcP, destP, 4)
inlines = 0
srcIn = []
dstIn = []
for p1, p2 in zip(src_Pts, dst_Pts):
p1U = (np.append(p1, 1)).reshape(3, 1)
p2e = H.dot(p1U)
p2e = (p2e / p2e[2])[:2].reshape(1, 2)[0]
if cv2.norm(p2 - p2e) < ransacThreshold:
inlines += 1
srcIn.append(p1)
dstIn.append(p2)
if inlines >= maxI:
maxI = inlines
maxSrcIn = srcIn.copy()
maxSrcIn = np.asarray(maxSrcIn)
maxDstIn = dstIn.copy()
maxDstIn = np.asarray(maxDstIn)
FH = findH(maxSrcIn, maxDstIn, maxI)
return FH
def warpTwoImages(img1, img2, H, maxSize): # This function stitch two images.
height, width = maxSize
img3 = np.zeros((height, width), dtype=np.uint8)
img3[0:img1.shape[0], 0:img1.shape[1]] = img1
for i in range(len(img2[0])):
for j in range(len(img2[1])):
pp = H.dot(np.array([[i], [j], [1]]))
pp = (pp / pp[2]).reshape(1, 3)[0]
if int(round(pp[1])) >= height or int(round(pp[0])) >= width or int(round(pp[1])) < 0 or int(round(pp[0])) < 0:
continue
img3[int(round(pp[1])), int(round(pp[0]))] = img2[j, i]
return img3
def detectAndMatchFeature(img1, img2): # This function detect keypoints and compute matches.
orb = cv2.ORB_create(nfeatures=100000)
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
des1 = np.float32(des1)
des2 = np.float32(des2)
matches = flann.knnMatch(des1, des2, k=2)
goodMatches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
goodMatches.append(m)
dst_pts = np.float32([kp1[m.queryIdx].pt for m in goodMatches]).reshape(-1, 2)
src_pts = np.float32([kp2[m.trainIdx].pt for m in goodMatches]).reshape(-1, 2)
return src_pts, dst_pts
def readPanoUtil(pano_files, N, img1): # This function create panorama image.
if N >= len(pano_files) - 1:
return img1
img2 = cv2.imread(pano_files[N], cv2.IMREAD_GRAYSCALE)
src_pts, dst_pts = detectAndMatchFeature(img1, img2)
H = ransacHomography(src_pts, dst_pts)
img3 = warpTwoImages(img1, img2, H, (500, 1000+((N-1)*150)))
cv2.imshow("xx"+str(N), img3)
cv2.waitKey(0)
return readPanoUtil(pano_files, N+1, img3)
Вот результаты для панорамного изображения шаг за шагом:
Как я могу решить эту проблему?
Как правильно сшивать изображения, используя Homography Matrix?