Я использую локальный преобразователь, используя sagemaker и пакетное преобразование. Однако, похоже, что преобразование не вызывает мой пользовательский код.
Ниже приведен SKlearn init
from sagemaker.sklearn.estimator import SKLearn
source_dir = 'train'
script_path = 'train.py'
sklearn = SKLearn(
entry_point=script_path,
train_instance_type="local_gpu",
source_dir=source_dir,
role=role,
sagemaker_session=sagemaker_session)
sklearn.fit({'train': "file://test.csv"})
train.py - это скрипт python, который загружает данные обучения, и сохраняет модель в S3
пакетное преобразование:
transformer = sklearn.transformer(instance_count=1,
entry_point=source_dir+"/"+script_path,
instance_type='local_gpu',
strategy='MultiRecord',
assemble_with='Line'
)
transformer.transform("file://test_messages", content_type='text/csv', split_type='Line')
print('Waiting for transform job: ' + transformer.latest_transform_job.job_name)
transformer.wait()
file://test_messages
содержит CSV, который является списком строк
Полная ошибка
algo-1-6c5rl_1 | 172.18.0.1 - - [30/Jan/2020:14:14:30 +0000] "GET /ping HTTP/1.1" 200 0 "-" "-"
algo-1-6c5rl_1 | 172.18.0.1 - - [30/Jan/2020:14:14:30 +0000] "GET /execution-parameters HTTP/1.1" 404 232 "-" "-"
algo-1-6c5rl_1 | 2020-01-30 14:14:30,846 ERROR - train - Exception on /invocations [POST]
algo-1-6c5rl_1 | Traceback (most recent call last):
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_containers/_functions.py", line 93, in wrapper
algo-1-6c5rl_1 | return fn(*args, **kwargs)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_sklearn_container/serving.py", line 56, in default_input_fn
algo-1-6c5rl_1 | return np_array.astype(np.float32) if content_type in content_types.UTF8_TYPES else np_array
algo-1-6c5rl_1 | ValueError: could not convert string to float: 'IMPORTANT - You could be entitled up to �3,160 in compensation from mis-sold PPI on a credit card or loan. Please reply PPI for info or STOP to opt out.'
algo-1-6c5rl_1 |
algo-1-6c5rl_1 | During handling of the above exception, another exception occurred:
algo-1-6c5rl_1 |
algo-1-6c5rl_1 | Traceback (most recent call last):
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/app.py", line 2446, in wsgi_app
algo-1-6c5rl_1 | response = self.full_dispatch_request()
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/app.py", line 1951, in full_dispatch_request
algo-1-6c5rl_1 | rv = self.handle_user_exception(e)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/app.py", line 1820, in handle_user_exception
algo-1-6c5rl_1 | reraise(exc_type, exc_value, tb)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise
algo-1-6c5rl_1 | raise value
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/app.py", line 1949, in full_dispatch_request
algo-1-6c5rl_1 | rv = self.dispatch_request()
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/flask/app.py", line 1935, in dispatch_request
algo-1-6c5rl_1 | return self.view_functions[rule.endpoint](**req.view_args)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_containers/_transformer.py", line 200, in transform
algo-1-6c5rl_1 | self._model, request.content, request.content_type, request.accept
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_containers/_transformer.py", line 227, in _default_transform_fn
algo-1-6c5rl_1 | data = self._input_fn(content, content_type)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_containers/_functions.py", line 95, in wrapper
algo-1-6c5rl_1 | six.reraise(error_class, error_class(e), sys.exc_info()[2])
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/six.py", line 692, in reraise
algo-1-6c5rl_1 | raise value.with_traceback(tb)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_containers/_functions.py", line 93, in wrapper
algo-1-6c5rl_1 | return fn(*args, **kwargs)
algo-1-6c5rl_1 | File "/miniconda3/lib/python3.7/site-packages/sagemaker_sklearn_container/serving.py", line 56, in default_input_fn
algo-1-6c5rl_1 | return np_array.astype(np.float32) if content_type in content_types.UTF8_TYPES else np_array
algo-1-6c5rl_1 | sagemaker_containers._errors.ClientError: could not convert string to float: 'IMPORTANT - You could be entitled up to �3,160 in compensation from mis-sold PPI on a credit card or loan. Please reply PPI for info or STOP to opt out.'
algo-1-6c5rl_1 | 172.18.0.1 - - [30/Jan/2020:14:14:30 +0000] "POST /invocations HTTP/1.1" 500 290 "-" "-"
.Waiting for transform job: sagemaker-scikit-learn-2020-01-30-14-14-30-490
Кажется, он не может обработать мою строку. У меня есть код в train.py для преобразования строки с использованием TfidfVectorizer, но этот код не вызывается