Я пытаюсь понять, как получается следующая модель в тензорном потоке. Я более привык видеть многослойные персептроны, сделанные с использованием Tensorflow.kera.Sequential (). Если кто-то может объяснить, как создается модель или как узнать больше об ее архитектуре - что-то вроде model.summary () - я был бы очень признателен. Спасибо!
источник: https://github.com/github/CodeSearchNet/blob/master/src/models/model.py
Полное определение класса можно найти по ссылке выше.
def make_model(self, is_train: bool):
with self.__sess.graph.as_default():
random.seed(self.hyperparameters['seed'])
np.random.seed(self.hyperparameters['seed'])
tf.set_random_seed(self.hyperparameters['seed'])
self._make_model(is_train=is_train)
self._make_loss()
if is_train:
self._make_training_step()
self.__summary_writer = tf.summary.FileWriter(self.__tensorboard_dir, self.__sess.graph)
def _make_model(self, is_train: bool) -> None:
"""
Create the actual model.
Note: This has to create self.ops['code_representations'] and self.ops['query_representations'],
tensors of the same shape and rank 2.
"""
self.__placeholders['dropout_keep_rate'] = tf.placeholder(tf.float32,
shape=(),
name='dropout_keep_rate')
self.__placeholders['sample_loss_weights'] = \
tf.placeholder_with_default(input=np.ones(shape=[self.hyperparameters['batch_size']],
dtype=np.float32),
shape=[self.hyperparameters['batch_size']],
name='sample_loss_weights')
with tf.variable_scope("code_encoder"):
language_encoders = []
for (language, language_metadata) in sorted(self.__per_code_language_metadata.items(), key=lambda kv: kv[0]):
with tf.variable_scope(language):
self.__code_encoders[language] = self.__code_encoder_type(label="code",
hyperparameters=self.hyperparameters,
metadata=language_metadata)
language_encoders.append(self.__code_encoders[language].make_model(is_train=is_train))
self.ops['code_representations'] = tf.concat(language_encoders, axis=0)
with tf.variable_scope("query_encoder"):
self.__query_encoder = self.__query_encoder_type(label="query",
hyperparameters=self.hyperparameters,
metadata=self.__query_metadata)
self.ops['query_representations'] = self.__query_encoder.make_model(is_train=is_train)
code_representation_size = next(iter(self.__code_encoders.values())).output_representation_size
query_representation_size = self.__query_encoder.output_representation_size
assert code_representation_size == query_representation_size, \
f'Representations produced for code ({code_representation_size}) and query ({query_representation_size}) cannot differ!'