Как найти углы для совмещения векторов X, Y, Z с другой системой координат - PullRequest
2 голосов
/ 01 мая 2020

Я пытаюсь повернуть группу трехмерных точек (образующих прямоугольный angular объект), созданных с использованием GLMeshItem в pyqtgraph и opengl. Однако у меня возникают проблемы с этим.

Мне нужно выровнять оси объекта (T_X, T_Y, T_Z) по осям (Q_X, Q_Y, Q_Z). Оси Q представляют собой векторы, рассчитанные по кватерниону.

Шаги для воспроизведения: 1. Сделайте матрицу вращения из кватерниона 2. Умножьте матрицу, чтобы определить оси Q, которые я хочу повернуть в 3. Переведите начало объекта в Q. 4. Создайте единичные векторы и вычислите угол между парами осей X, Y, Z 5. Поверните разницу между осями X и Z

Вы можете мне помочь?

enter image description here

Пример кода:

import numpy as np
import sys
from PyQt5.QtWidgets import QApplication, QHBoxLayout, QWidget
import pyqtgraph as pg
import pyqtgraph.opengl as gl
from pyqtgraph import Vector as VC

class MainWindow(QWidget):
    def __init__(self):
        super(MainWindow, self).__init__()

        def quaternion_to_rotmat(point):
            qw = point[0]
            qx = point[1]
            qy = point[2]
            qz = point[3]

            RotMat = np.array([[1 - 2 * (qy ** 2) - 2 * (qz ** 2),
                                2 * qx * qy - 2 * qz * qw,
                                2 * qx * qz + 2 * qy * qw],
                               [2 * qx * qy + 2 * qz * qw,
                                1 - 2 * (qx ** 2) - 2 * (qz ** 2),
                                2 * qy * qz - 2 * qx * qw],
                               [2 * qx * qz - 2 * qy * qw,
                                2 * qy * qz + 2 * qx * qw,
                                1 - 2 * (qx ** 2) - (2 * qy ** 2)]])
            return RotMat


        self.setFixedSize(1000, 700)
        self.graphLayout = QHBoxLayout()

        # Set camera
        w = gl.GLViewWidget()

        # Group of points defining the rectangle object
        verts = np.array([(-1.0, -1.0, 0.0),
                          (1.0, -1.0, 0.0),
                          (-1.0, 1.0, 0.0),
                          (1.0, 1.0, 0.0),
                          (-1.2987148761749268, -1.3632668256759644, -0.16066408157348633),
                          (-1.2987148761749268, -1.3632668256759644, 7.678848743438721),
                          (-1.2987148761749268, 1.3632668256759644, -0.16066408157348633),
                          (-1.2987148761749268, 1.3632668256759644, 7.678848743438721),
                          (1.2987148761749268, -1.3632668256759644, -0.16066408157348633),
                          (1.2987148761749268, -1.3632668256759644, 7.678848743438721),
                          (1.2987148761749268, 1.3632668256759644, -0.16066408157348633),
                          (1.2987148761749268, 1.3632668256759644, 7.678848743438721),
                          (-1.0, -1.0, 7.536437511444092),
                          (1.0, -1.0, 7.536437511444092),
                          (-1.0, 1.0, 7.536437511444092),
                          (1.0, 1.0, 7.536437511444092)])

        faces = np.array([(1, 2, 0), (1, 3, 2), (5, 6, 4),
                          (7, 10, 6), (11, 8, 10), (9, 4, 8),
                          (10, 4, 6), (7, 9, 11), (5, 7, 6),
                          (7, 11, 10), (11, 9, 8), (9, 5, 4),
                          (10, 8, 4), (7, 5, 9), (13, 14, 12),
                          (13, 15, 14)])

        colors = np.array([[1, 1, 1, 1] for i in range(len(faces))])

        # Object origin (should rotate around this position)
        T_Pos = (verts[0] + verts[3]) / 2

        # Q position
        Q_Pos = np.array([-13.5708862, 1.1735056, 107.5772339])

        # Q quaternion (W, X, Y, Z)
        Q_Quat = np.array([0.547013, 0.593053, -0.543852, -0.230846])

        # Find the rotation matrix of Q quaternion
        rotMat = quaternion_to_rotmat(Q_Quat)

        # Matrix multiplication
        r1 = np.matmul(rotMat, np.array([1, 0, 0]))
        r2 = np.matmul(rotMat, np.array([0, 1, 0]))
        r3 = np.matmul(rotMat, np.array([0, 0, 1]))

        # Define new points - Multiply by 25 to visualize the axis in openGL
        Q_X = np.array([Q_Pos[0] + r1[0] * 25, Q_Pos[1] + r1[1] * 25, Q_Pos[2] + r1[2] * 25])
        Q_Y = np.array([Q_Pos[0] + r2[0] * 25, Q_Pos[1] + r2[1] * 25, Q_Pos[2] + r2[2] * 25])
        Q_Z = np.array([Q_Pos[0] + r3[0] * 25, Q_Pos[1] + r3[1] * 25, Q_Pos[2] + r3[2] * 25])

        Q_Line_X = np.array([Q_Pos, Q_X])
        Q_Line_Y = np.array([Q_Pos, Q_Y])
        Q_Line_Z = np.array([Q_Pos, Q_Z])

        Q_Vec_X = Q_Pos-Q_X
        Q_Vec_Y = Q_Pos-Q_Y
        Q_Vec_Z = Q_Pos-Q_Z

        # Camera settings
        w.setCameraPosition(distance=90, azimuth=-2)
        w.opts['center'] = VC(Q_Pos)

        # Add object to window
        self.object = gl.GLMeshItem(vertexes=verts, faces=faces, faceColors=colors, smooth=False, shader='shaded', glOptions='opaque')
        w.addItem(self.object)

        # Add visualization of Q positions
        sphere = gl.MeshData.sphere(rows=10, cols=20, radius=[1])

        self.P_Point = gl.GLMeshItem(meshdata=sphere, smooth=True, color=(1, 0, 1, 0.2), shader="balloon", glOptions="additive")
        w.addItem(self.P_Point)
        tr1 = pg.Transform3D()
        tr1.translate(*Q_Pos)
        self.P_Point.setTransform(tr1)

        # Translated object origin (should rotate around this position)
        # Translate T to Q
        posDiff = Q_Pos - T_Pos
        verts = posDiff-verts

        T_Pos_base = (verts[0] + verts[3]) / 2
        T_Pos_baseX = T_Pos_base - np.array([T_Pos_base[0] + 10, T_Pos_base[1], T_Pos_base[2]])
        T_Pos_baseY = T_Pos_base - np.array([T_Pos_base[0], T_Pos_base[1] + 10, T_Pos_base[2]])
        T_Pos_baseZ = T_Pos_base - np.array([T_Pos_base[0], T_Pos_base[1], T_Pos_base[2] + 10])


        unit_TX = T_Pos_baseX / np.linalg.norm(T_Pos_baseX)
        unit_TY = T_Pos_baseY / np.linalg.norm(T_Pos_baseY)
        unit_TZ = T_Pos_baseZ / np.linalg.norm(T_Pos_baseZ)

        unit_QX = Q_Vec_X / np.linalg.norm(Q_Vec_X)
        unit_QY = Q_Vec_Y / np.linalg.norm(Q_Vec_Y)
        unit_QZ = Q_Vec_Z / np.linalg.norm(Q_Vec_Z)

        dotX = np.dot(unit_TX, unit_QX)
        dotY = np.dot(unit_TY, unit_QY)
        dotZ = np.dot(unit_TZ, unit_QZ)

        angleX = np.rad2deg(np.arccos(dotX))
        angleY = np.rad2deg(np.arccos(dotY))
        angleZ = np.rad2deg(np.arccos(dotZ))

        # Visualization of T axes
        T_Pos_X = [T_Pos[0]+10, T_Pos[1], T_Pos[2]]
        self.T_Plot_X = gl.GLLinePlotItem(pos=np.array([T_Pos, T_Pos_X]), color=(1,0,0,1), width=1, antialias=False)
        w.addItem(self.T_Plot_X)
        T_Pos_Y = [T_Pos[0], T_Pos[1]+10, T_Pos[2]]
        self.T_Plot_Y = gl.GLLinePlotItem(pos=np.array([T_Pos, T_Pos_Y]), color=(0,1,0,1), width=1, antialias=False)
        w.addItem(self.T_Plot_Y)
        T_Pos_Z = [T_Pos[0], T_Pos[1], T_Pos[2]+10]
        self.T_Plot_Z = gl.GLLinePlotItem(pos=np.array([T_Pos, T_Pos_Z]), color=(0,0,1,1), width=1, antialias=False)
        w.addItem(self.T_Plot_Z)

        # Visualization of Q axes
        self.Q_Plot_X = gl.GLLinePlotItem(pos=np.array(Q_Line_X), color=(1,0,0,1), width=1, antialias=False)
        w.addItem(self.Q_Plot_X)
        self.Q_Plot_Y = gl.GLLinePlotItem(pos=np.array(Q_Line_Y), color=(0,1,0,1), width=1, antialias=False)
        w.addItem(self.Q_Plot_Y)
        self.Q_Plot_Z = gl.GLLinePlotItem(pos=np.array(Q_Line_Z), color=(0,0,1,1), width=1, antialias=False)
        w.addItem(self.Q_Plot_Z)


        tr1 = pg.Transform3D()
        tr1.translate(*Q_Pos)
        tr1.rotate(-angleX, 0, 0, 1)
        tr1.rotate(angleZ, 1, 0, 0)
        self.T_Plot_X.setTransform(tr1)
        self.T_Plot_Y.setTransform(tr1)
        self.T_Plot_Z.setTransform(tr1)

        tr5 = pg.Transform3D()
        tr5.translate(*Q_Pos)
        tr5.rotate(-angleX, 0, 0, 1)
        tr5.rotate(angleZ, 1, 0, 0)
        self.object.setTransform(tr5)

        self.graphLayout.addWidget(w)
        self.setLayout(self.graphLayout)


if __name__ == '__main__':
    app = QApplication(sys.argv)
    ex = MainWindow()
    ex.show()
    sys.exit(app.exec_())

Ответы [ 3 ]

1 голос
/ 08 мая 2020

Попробуйте это: еще один = verts + 2.0 * np.cross (Q_Quat [1: 4], np.cross (Q_Quat [1: 4], verts) + Q_Quat [0] * verts)

0 голосов
/ 06 мая 2020
  1. создать 4x4 матрицы однородного преобразования A,B, представляющих ваши 2 системы координат

    , если у вас есть исходные и базисные векторы, просто вопрос подачи его в матрицу ...

  2. вычислить преобразование C, которое преобразует A в B

                 A * C =             B // Inverse(A)*
    Inverse(A) * A * C = Inverse(A)* B
                     C = Inverse(A)* B
    

И это все ...

0 голосов
/ 01 мая 2020

Геометрия - у вас есть 3 точки:
mpo - это meshPointOrigin
mpe - это meshPointEnd
hp - это headPoint
- У вас есть 2 вектора:
V1 = (mpe-mpo) от mpo до mpe
V2 = (hp-mpo) от mpo до hp
- Вы хотите повернуть V1 до V2.
Единичный вектор нормали VN = (V1 кросс V2) .normalize ()
Косинус угла V1 точка V2
Отсюда вы можете сделать кватернион:

kcos = sqrt((1+cosine)/2) (half-angle formula)  
ksin = sqrt(1-ksin*ksin)   
quaternionWXYZ = (kcos, ksin*VN.x, ksin*VN.y, ksin*VN.z)  

Если длина V1 отличается от V2, вам придется масштабировать голову.
(РЕДАКТИРОВАТЬ: это не поворачивает голову влево / вправо, не так ли? Это может быть только начало.)

...