Вы можете использовать метод pointPolygonTest для фильтрации обнаруженных ключевых точек. Используйте обнаруженные контуры в качестве граничного многоугольника. Вы также сможете определить желаемое поле.
Пример Sample (для 4-точечного контура):
def inside_point(self, point, rect):
# point is a list (x, y)
# rect is a contour with shape [4, 2]
rect = rect.reshape([4, 1, 2]).astype(np.int64)
dist = cv2.pointPolygonTest(rect,(point[0], point[1]),True)
if dist>=0:
# print(dist)
return True
else:
return False
Вы также можете нарисовать контуры на изображении маски и проверить, находится ли точка внутри контуры, просто проверьте значение пикселя с координатами точки, и если оно не равно 0, то точка действительна.
Кажется, все хорошо: у меня нет xfeatures2d, поэтому здесь используются функции ORB.
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
img = cv.imread('image.jpg')
#img = cv.resize(img,(512,512))
img = cv.copyMakeBorder(img,20,20,20,20, 0)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
_ , gray = cv.threshold(gray,20,255,cv.THRESH_TOZERO)
gray=cv.erode(gray,np.ones( (5,5), np.int8) )
edges = cv.Canny(gray, 100,200)
contours, hierarchy = cv.findContours(edges, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
orb = cv.ORB_create(nfeatures=10000)
kp, des = orb.detectAndCompute(gray,None)
outimg = cv.drawContours(img, contours, -1, (0,255,0), 3)
k = []
for cont in contours:
for i in kp:
(x, y) =i.pt
dist = cv.pointPolygonTest(cont, (x,y), True)
if dist>=0:
k.append(i)
for i in k:
pt=(int(i.pt[0]),int(i.pt[1]) )
cv.circle(outimg,pt,3, (255,255,255),-1)
cv.imwrite('result.jpg',outimg)
cv.imshow('outimg',outimg)
cv.waitKey()