Если вам не нужны все эти дополнительные фреймы данных, вы можете просто добавить новые столбцы в свой оригинальный файл:
import pandas as pd
import numpy as np
original = pd.DataFrame(
np.random.randint(0,100,size=(10, 3)),
columns=["P1_day", "P1_week", "P1_month"],
)
original[
["P1_day_0", "P1_week_0", "P1_month_0"]
] = original[
["P1_day", "P1_week", "P1_month"]
].shift(3)
print(original)
output:
P1_day P1_week P1_month P1_day_0 P1_week_0 P1_month_0
0 2 35 26 NaN NaN NaN
1 99 4 96 NaN NaN NaN
2 4 67 6 NaN NaN NaN
3 76 33 31 2.0 35.0 26.0
4 84 60 98 99.0 4.0 96.0
5 57 1 58 4.0 67.0 6.0
6 35 70 96 76.0 33.0 31.0
7 81 32 39 84.0 60.0 98.0
8 25 4 38 57.0 1.0 58.0
9 83 4 60 35.0 70.0 96.0
python ссылка на пример для репетитора
Редактировать: OP задал следующий вопрос:
да, для первого ряда это имеет смысл. Но моя задача состоит в том, чтобы добавить первые 3 строки с индексом 0-1-2 в виде новых 9 столбцов для соответствующих строк, начинающихся с 3-го индекса. В вашей выходной строке с индексом 1-й не добавляется 3-й ряд, как 3 столбца. Поэтому в моем коде я использовал итеративно shift (2) и shift (1).
Вот как это можно сделать итеративно:
import pandas as pd
import numpy as np
original = pd.DataFrame(
np.random.randint(0,100,size=(10, 3)),
columns=["P1_day", "P1_week", "P1_month"],
)
for shift, n in ((3,0),(2,1),(1,2)):
original[
[f"P1_day_{n}", f"P1_week_{n}", f"P1_month_{n}"]
] = original[
["P1_day", "P1_week", "P1_month"]
].shift(shift)
pd.set_option('display.max_columns', None)
print(original.iloc[3:])
Вывод:
P1_day P1_week P1_month P1_day_0 P1_week_0 P1_month_0 P1_day_1 \
3 58 43 74 26.0 56.0 82.0 56.0
4 44 27 40 56.0 87.0 38.0 31.0
5 2 90 4 31.0 32.0 87.0 58.0
6 90 70 6 58.0 43.0 74.0 44.0
7 1 31 57 44.0 27.0 40.0 2.0
8 96 22 69 2.0 90.0 4.0 90.0
9 13 98 47 90.0 70.0 6.0 1.0
P1_week_1 P1_month_1 P1_day_2 P1_week_2 P1_month_2
3 87.0 38.0 31.0 32.0 87.0
4 32.0 87.0 58.0 43.0 74.0
5 43.0 74.0 44.0 27.0 40.0
6 27.0 40.0 2.0 90.0 4.0
7 90.0 4.0 90.0 70.0 6.0
8 70.0 6.0 1.0 31.0 57.0
9 31.0 57.0 96.0 22.0 69.0
python ссылка преподавателя
Редактировать 2: Не делать здесь никаких предположений, но если ваша конечная цель - получить что-то вроде 4-периодной скользящей средней от данные во всех этих новых столбцах, тогда они могут вам вообще не понадобиться. Вы можете использовать pandas .DataFrame.rolling вместо:
import pandas as pd
import numpy as np
original = pd.DataFrame(
np.random.randint(0,100,size=(10, 3)),
columns=["P1_day", "P1_week", "P1_month"],
)
original[
["P1_day_4PMA", "P1_week_4PMA", "P1_month_4PMA"]
] = original[
["P1_day", "P1_week", "P1_month"]
].rolling(4).mean()
pd.set_option('display.max_columns', None)
print(original.iloc[3:])
Вывод:
P1_day P1_week P1_month P1_day_4PMA P1_week_4PMA P1_month_4PMA
3 1 13 48 31.25 38.00 55.00
4 10 4 40 22.00 21.00 45.75
5 7 76 0 5.50 23.75 37.00
6 5 69 9 5.75 40.50 24.25
7 63 31 82 21.25 45.00 32.75
8 26 67 22 25.25 60.75 28.25
9 89 41 40 45.75 52.00 38.25
еще python ссылка для репетитора