Итак, я сейчас пытаюсь создать программу распознавания рас с использованием нейронной сети свертки. Я ввожу 200px версиями UTKFaceRegonition набор данных размером 200px (поместите мой набор данных на диск Google, если хотите посмотреть). Я использую 8 различных классов (4 расы * 2 пола), используя керасы и тензорный поток, каждый из которых имеет около 700 изображений, но я сделал это с 1000. Проблема в том, что когда я запускаю сеть, она получает в лучшем случае точность 13,5% и около 11-12,5 Точность проверки в%, с потерей около 2.079-2.081, даже после 50 эпох или около того, она не улучшится вообще. Моя текущая гипотеза состоит в том, что это случайное предположение о том, что материал не учится, потому что 8/100 = 12,5%, то есть о том, что он получает, и на других моделях, которые я сделал с 3 классами, он получал около 33%
Я заметил, что точность валидации в первую, а иногда и во вторую эпоху различна, но после этого она остается постоянной. Я увеличил разрешение в пикселях, изменил количество слоев, типы слоев и нейронов на слой, я пробовал оптимизаторы (sgd на нормальном lr и на очень больших и малых (.1 и 10 ^ -6) и I ' Мы пробовали разные функции потерь, такие как KLDivergence, но, похоже, ничто не повлияло на это, кроме KLDivergence, которая за один прогон показала себя неплохо (около 16%), но потом снова провалилась. возможно, это связано с количеством плотных слоев, но, честно говоря, я не знаю, почему он не учится.
Вот код для создания тензоров
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import os
import cv2
import random
import pickle
WIDTH_SIZE = 200
HEIGHT_SIZE = 200
CATEGORIES = []
for CATEGORY in os.listdir('./TRAINING'):
CATEGORIES.append(CATEGORY)
DATADIR = "./TRAINING"
training_data = []
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path)[:700]:
try:
img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_COLOR)
new_array = cv2.resize(img_array,(WIDTH_SIZE,HEIGHT_SIZE))
training_data.append([new_array,class_num])
except Exception as error:
print(error)
create_training_data()
random.shuffle(training_data)
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, WIDTH_SIZE, HEIGHT_SIZE, 3)
y = np.array(y)
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
Вот моя построенная модель
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
import pickle
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)
X = X/255.0
model = Sequential()
model.add(Conv2D(256, (2,2), activation = 'relu', input_shape = X.shape[1:]))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(8, activation="softmax"))
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
model.fit(X, y, batch_size=16,epochs=100,validation_split=.1)
Вот журнал из 10 эпох, которые я провел.
5040/5040 [==============================] - 55s 11ms/sample - loss: 2.0803 - accuracy: 0.1226 - val_loss: 2.0796 - val_accuracy: 0.1250
Epoch 2/100
5040/5040 [==============================] - 53s 10ms/sample - loss: 2.0797 - accuracy: 0.1147 - val_loss: 2.0798 - val_accuracy: 0.1161
Epoch 3/100
5040/5040 [==============================] - 53s 10ms/sample - loss: 2.0797 - accuracy: 0.1190 - val_loss: 2.0800 - val_accuracy: 0.1161
Epoch 4/100
5040/5040 [==============================] - 53s 11ms/sample - loss: 2.0797 - accuracy: 0.1173 - val_loss: 2.0799 - val_accuracy: 0.1107
Epoch 5/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1183 - val_loss: 2.0802 - val_accuracy: 0.1107
Epoch 6/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1226 - val_loss: 2.0801 - val_accuracy: 0.1107
Epoch 7/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1238 - val_loss: 2.0803 - val_accuracy: 0.1107
Epoch 8/100
5040/5040 [==============================] - 54s 11ms/sample - loss: 2.0797 - accuracy: 0.1169 - val_loss: 2.0802 - val_accuracy: 0.1107
Epoch 9/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1212 - val_loss: 2.0803 - val_accuracy: 0.1107
Epoch 10/100
5040/5040 [==============================] - 53s 11ms/sample - loss: 2.0797 - accuracy: 0.1177 - val_loss: 2.0802 - val_accuracy: 0.1107
Так что, да, любая помощь в том, почему моя сеть, кажется, просто гадает? Спасибо!