В коде было несколько проблем, которые я исправил:
- Изменил
textOutput
на tableOutput
, но я все еще оставил вторую tableOutput
без прогнозов (что ниже, чем у предсказания), поскольку я не был уверен, хотите ли вы сохранить его - Изменили
rawData
и prediction
внутри renderTable
на функции вместо переменных, так как реактивные значения должны вызываться как функции - Изменил
rbind
на cbind
, чтобы появился новый столбец с предсказаниями - Также возникла проблема с данными примера, так как функция
glm
требует цифры c переменная как значение, которое должно быть предсказано, поэтому я преобразовал «принято» в 1 и «отклонить» в 0 внутри функции glm
Я также проверил это, введя файл, который был CSV из df
Вот код:
library(shiny)
age=round(runif(100,15,100))
bmi=round(runif(100,15,45))
cholesterol=round(runif(100,100,200))
gender=sample(c('male','female'), 100, replace=TRUE, prob=c(0.45,0.55))
height=round(runif(100,140,200))
weight=round(runif(100,140,200))
outcome=sample(c('accepted','reject'),100,replace=T,prob=c(0.30,0.70))
df=data.frame(age,bmi,cholesterol,gender,height,weight,outcome)
model <- glm(2 / as.numeric(as.factor(outcome)) - 1 ~.,family=binomial(link='logit'),data=df)
ui <- fluidPage(
# App title ----
titlePanel("Tabsets"),
mainPanel(
# Output: Tabset w/ plot, summary, and table ----
tabsetPanel(type = "tabs",
tabPanel("Single Prediction",
textOutput("Pred"),
numericInput(inputId='age', label='Age', value = 18,min = NA, max = NA, step = NA,width = NULL),
checkboxGroupInput(inputId='gender', label='Gender', c('male','female'), selected = 'female', inline = FALSE,width = NULL),
numericInput(inputId='bmi', label='bmi', value = 18,min = NA, max = NA, step = NA,width = NULL),
numericInput(inputId='height', label='Height', value = 150,min = NA, max = NA, step = NA,width = NULL),
numericInput(inputId='weight', label='Weight', value = 25, min = NA, max = NA, step = NA,width = NULL),
numericInput(inputId='cholesterol', label='Cholesterol', value = 25, min = NA, max = NA, step = NA,width = NULL)
),
tabPanel("Predict from csv",
fileInput("csvFile", "Upload csv"),
tableOutput("Prediction"),
tableOutput("rawData"))
)
)
)
server <- function(input, output, session) {
rawData <- eventReactive(input$csvFile, {
read.csv(input$csvFile$datapath)
})
output$rawData <- renderTable({
rawData()
})
prediction <- reactive({
predict(model,rawData(),type="response")
})
output$Prediction <- renderTable({cbind(rawData(), prediction())})
#output$Prediction <- renderText(prediction())
data <- reactive({
req(input$gender)
data.frame(age=input$age,
gender=input$gender,
bmi=input$bmi,
height=input$height,
weight=input$weight,
cholesterol=input$cholesterol)
})
pred <- reactive({
predict(model,data(),type="response")
})
output$Pred <- renderText(pred())
}
shinyApp(ui, server)