У меня есть этот код, визуализирующий 3D-облако с помощью мыши поверх raycasting на плоскости, но когда я нахожусь в середине облака, эффект при наведении не работает, и когда я наведен на границу, он работает, я не уверен, что Raycasting не улавливает или объект большой.
Я пробовал raycasting.intersectObjects(scene.chidren,true)
. Но пустые массивы. Пожалуйста, дайте мне знать, сможет ли кто-нибудь найти, что я сделал неправильно или что мне нужно исправить.
Спасибо
(function($) {
var themeDir = $('#absolute-theme-dir').val();
var w = window.innerWidth,
h = window.innerHeight;
var scene = new THREE.Scene();
var geometry;
var MAX_POINTS = 25000;
var rendering = 'cloud';
var namespace;
var destroying = false;
var loader = new GLTFLoader();
var cloudVertices = [];
var rotateObject;
var particles, pointsMaterial, mat;
var cloudGeometry;
var targetGeometry;
var camera = new THREE.OrthographicCamera(window.innerWidth / -2, window.innerWidth / 2, window.innerHeight / 2, window.innerHeight / -2, 1, 1500);
var renderer = new THREE.WebGLRenderer({
antialias: true,
alpha: true
});
var planeBuffer;
var count = 0;
var clock = new THREE.Clock();
var s = {
vs: `
#define NUM_OCTAVES 8
uniform vec3 mouse;
uniform float time;
uniform float radius;
varying vec2 vUv;
varying vec3 vPosition;
// Simplex 4D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}
vec4 grad4(float j, vec4 ip){
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 4. - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.5) * s.www;
return p;
}
float snoise(vec4 v){
const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4
0.309016994374947451); // (sqrt(5) - 1)/4 F4
// First corner
vec4 i = floor(v + dot(v, C.yyyy) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C
vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;
// Permutations
i = mod(i, 289.0);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
void main(){
vec3 newpos = position;
vec3 dir = newpos - mouse;
float dist = length(dir);
vec3 noisepos;
noisepos.x = snoise(vec4(position * 0.6, time * 0.5));
noisepos.y = snoise(vec4(position, time));
noisepos.z = snoise(vec4(position * 0.6, time * 0.5));
float ratio = 1. - clamp(dist / radius, 0.3, 1.0);
vec3 pos = dir * ratio * noisepos * 2.5;
newpos.y += pos.y * 0.5;
newpos.xz += pos.xz;
vec4 mvPosition = modelViewMatrix * vec4(newpos, 1.0);
gl_PointSize = 100. * (6. / - mvPosition.z);
gl_Position = projectionMatrix * mvPosition;
vPosition = position;
vUv = uv;
}
`,
fs: `
varying vec2 vUv;
varying vec3 vPosition;
void main(){
vec3 color = vec3(228, 172, 37) / 255.;
gl_FragColor = vec4(color, 0);
}
`
};
var uniforms = {
time: {
type: "f",
value: 0
},
resolution: {
type: "v2",
value: new THREE.Vector2(w / 2, h / 2)
},
mouse: {
type: "v3",
value: new THREE.Vector3(0, 0, 0)
},
radius: {
type: "f",
value: 0
}
};
var raycaster = new THREE.Raycaster();
var plane = new THREE.Plane(new THREE.Vector3(0, 0, 1), 0);
var mouse = new THREE.Vector3();
namespace = {
init: function() {
var objectCloudDir = 'public/_resources/themes/webgl/glb/Cloud_010.glb';
loader.load(objectCloudDir, function(object) {
var model = object.scene.children[0];
model.traverse((node) => {
if (!node.isMesh) return;
node.material.wireframe = true;
node.material.emissive = new THREE.Color(0xE4AC25);
});
let sampler = new MeshSurfaceSampler(model)
.setWeightAttribute(null)
.build();
let n = new THREE.Vector3();
for (let i = 0; i < MAX_POINTS; i++) {
let p = new THREE.Vector3();
sampler.sample(p, n);
cloudVertices.push(p);
}
cloudGeometry = new THREE.Geometry().setFromPoints(cloudVertices);
});
//init function
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000, 0);
var controls = new OrbitControls(camera, renderer.domElement);
controls.enableRotate = false;
controls.enableZoom = false;
controls.update();
$('.canvas-wrap').append(renderer.domElement);
/* GEOMETRY */
var mat = new THREE.ShaderMaterial({
extensions: {
derivatives: "#extension GL_OES_standard_derivatives : enable"
},
uniforms: uniforms,
vertexShader: s.vs,
fragmentShader: s.fs,
});
var pointsMat = new THREE.PointsMaterial({
size: 1,
color: 0xE4AC25,
sizeAttenuation: false,
morphTargets: true,
});
geometry = new THREE.BufferGeometry();
geometry.morphAttributes.position = [];
var positions = new Float32Array(MAX_POINTS * 3);
geometry.setAttribute('position', new THREE.BufferAttribute(positions, 3));
geometry.computeBoundingSphere();
particles = new THREE.Points(geometry, mat);
rotateObject = new THREE.Object3D();
rotateObject.add(particles);
scene.add(rotateObject);
animate();
var helper;
var timeout = null;
window.addEventListener("mousemove", event => {
mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;
raycaster.setFromCamera(mouse, camera);
var hover = raycaster.ray.intersectPlane(plane, uniforms.mouse.value);
rotateObject.worldToLocal(hover);
clearTimeout(timeout);
var tween = new TimelineMax();
tween.to(uniforms.radius, 0.5, {
value: 50,
});
tween.play();
timeout = setTimeout(function() {
tween.to(uniforms.radius, 0.75, {
value: 0,
});
tween.play();
}, 10);
});
var pos = particles.geometry.attributes.position;
function render(a) {
if (rendering == 'cloud') {
targetGeometry = cloudGeometry;
// rotateObject.rotation.y += 0.003;
}
if (targetGeometry && particles.geometry) {
for (var i = 0, j = particles.geometry.attributes.position.array.length / 3; i < j; i++) {
var p = i * 3;
if (!particles.geometry.attributes.position.array[i]) {
particles.geometry.attributes.position.array[i] = Math.random() * 1000 - 500;
}
particles.geometry.attributes.position.array[p] -= (particles.geometry.attributes.position.array[p] - targetGeometry.vertices[i].x) * 0.08;
particles.geometry.attributes.position.array[p + 1] -= (particles.geometry.attributes.position.array[p + 1] - targetGeometry.vertices[i].y) * 0.08;
particles.geometry.attributes.position.array[p + 2] -= (particles.geometry.attributes.position.array[p + 2] - targetGeometry.vertices[i].z) * 0.08;
}
}
particles.geometry.attributes.position.needsUpdate = true;
camera.updateMatrixWorld();
camera.updateProjectionMatrix();
renderer.setAnimationLoop(() => {
const time = clock.getElapsedTime() * 0.2;
uniforms.time.value = time;
renderer.render(scene, camera)
});
count += 0.1;
}
function animate() {
requestAnimationFrame(animate);
render();
}
}
window.ns = namespace;
})(jQuery);