Raycaster не выполняет кастинг на весь объект - PullRequest
0 голосов
/ 27 мая 2020

У меня есть этот код, визуализирующий 3D-облако с помощью мыши поверх raycasting на плоскости, но когда я нахожусь в середине облака, эффект при наведении не работает, и когда я наведен на границу, он работает, я не уверен, что Raycasting не улавливает или объект большой.

Я пробовал raycasting.intersectObjects(scene.chidren,true). Но пустые массивы. Пожалуйста, дайте мне знать, сможет ли кто-нибудь найти, что я сделал неправильно или что мне нужно исправить.

Спасибо

(function($) {
    var themeDir = $('#absolute-theme-dir').val();

    var w = window.innerWidth,
        h = window.innerHeight;

    var scene = new THREE.Scene();
    var geometry;
    var MAX_POINTS = 25000;

    var rendering = 'cloud';

    var namespace;
    var destroying = false;
    var loader = new GLTFLoader();
    var cloudVertices = [];
    var rotateObject;

    var particles, pointsMaterial, mat;

    var cloudGeometry;
    var targetGeometry;

    var camera = new THREE.OrthographicCamera(window.innerWidth / -2, window.innerWidth / 2, window.innerHeight / 2, window.innerHeight / -2, 1, 1500);

var renderer = new THREE.WebGLRenderer({
        antialias: true,
        alpha: true
    });

    var planeBuffer;
    var count = 0;
    var clock = new THREE.Clock();
    var s = {
        vs: `
          #define NUM_OCTAVES 8

          uniform vec3 mouse;
          uniform float time;
          uniform float radius;

          varying vec2 vUv;
          varying vec3 vPosition;

          //    Simplex 4D Noise
          //    by Ian McEwan, Ashima Arts
          //
          vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
          float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
          vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
          float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}

          vec4 grad4(float j, vec4 ip){
            const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
            vec4 p,s;

            p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
            p.w = 4. - dot(abs(p.xyz), ones.xyz);
            s = vec4(lessThan(p, vec4(0.0)));
            p.xyz = p.xyz + (s.xyz*2.0 - 1.5) * s.www;

            return p;
          }

          float snoise(vec4 v){
            const vec2  C = vec2( 0.138196601125010504,  // (5 - sqrt(5))/20  G4
                                  0.309016994374947451); // (sqrt(5) - 1)/4   F4
          // First corner
            vec4 i  = floor(v + dot(v, C.yyyy) );
            vec4 x0 = v -   i + dot(i, C.xxxx);

          // Other corners

          // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
            vec4 i0;

            vec3 isX = step( x0.yzw, x0.xxx );
            vec3 isYZ = step( x0.zww, x0.yyz );
          //  i0.x = dot( isX, vec3( 1.0 ) );
            i0.x = isX.x + isX.y + isX.z;
            i0.yzw = 1.0 - isX;

          //  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
            i0.y += isYZ.x + isYZ.y;
            i0.zw += 1.0 - isYZ.xy;

            i0.z += isYZ.z;
            i0.w += 1.0 - isYZ.z;

            // i0 now contains the unique values 0,1,2,3 in each channel
            vec4 i3 = clamp( i0, 0.0, 1.0 );
            vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
            vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

            //  x0 = x0 - 0.0 + 0.0 * C
            vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
            vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
            vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
            vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;

          // Permutations
            i = mod(i, 289.0);
            float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
            vec4 j1 = permute( permute( permute( permute (
                       i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
                     + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
                     + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
                     + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
          // Gradients
          // ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
          // 7*7*6 = 294, which is close to the ring size 17*17 = 289.

            vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

            vec4 p0 = grad4(j0,   ip);
            vec4 p1 = grad4(j1.x, ip);
            vec4 p2 = grad4(j1.y, ip);
            vec4 p3 = grad4(j1.z, ip);
            vec4 p4 = grad4(j1.w, ip);

          // Normalise gradients
            vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
            p0 *= norm.x;
            p1 *= norm.y;
            p2 *= norm.z;
            p3 *= norm.w;
            p4 *= taylorInvSqrt(dot(p4,p4));

          // Mix contributions from the five corners
            vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
            vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
            m0 = m0 * m0;
            m1 = m1 * m1;
            return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
                         + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

          }

          void main(){
            vec3 newpos = position;
            vec3 dir = newpos - mouse;
            float dist = length(dir);


            vec3 noisepos;

            noisepos.x = snoise(vec4(position * 0.6, time * 0.5));
            noisepos.y = snoise(vec4(position, time));
            noisepos.z = snoise(vec4(position * 0.6, time * 0.5));

            float ratio = 1. - clamp(dist / radius, 0.3, 1.0);
            vec3 pos = dir * ratio * noisepos * 2.5;

            newpos.y += pos.y * 0.5;
            newpos.xz += pos.xz;

            vec4 mvPosition = modelViewMatrix * vec4(newpos, 1.0);
            gl_PointSize = 100. * (6. / - mvPosition.z);
            gl_Position = projectionMatrix * mvPosition;

            vPosition = position;
            vUv = uv;
          }
    `,
        fs: `
          varying vec2 vUv;
          varying vec3 vPosition;

          void main(){

            vec3 color = vec3(228, 172, 37) / 255.;

            gl_FragColor = vec4(color, 0);
          }
    `
    };

    var uniforms = {
        time: {
            type: "f",
            value: 0
        },
        resolution: {
            type: "v2",
            value: new THREE.Vector2(w / 2, h / 2)
        },
        mouse: {
            type: "v3",
            value: new THREE.Vector3(0, 0, 0)
        },
        radius: {
            type: "f",
            value: 0
        }
    };

    var raycaster = new THREE.Raycaster();
    var plane = new THREE.Plane(new THREE.Vector3(0, 0, 1), 0);

    var mouse = new THREE.Vector3();

    namespace = {
        init: function() {

            var objectCloudDir = 'public/_resources/themes/webgl/glb/Cloud_010.glb';
            loader.load(objectCloudDir, function(object) {
                var model = object.scene.children[0];
                model.traverse((node) => {
                    if (!node.isMesh) return;
                    node.material.wireframe = true;
                    node.material.emissive = new THREE.Color(0xE4AC25);
                });
                let sampler = new MeshSurfaceSampler(model)
                    .setWeightAttribute(null)
                    .build();
                let n = new THREE.Vector3();
                for (let i = 0; i < MAX_POINTS; i++) {
                    let p = new THREE.Vector3();
                    sampler.sample(p, n);
                    cloudVertices.push(p);
                }
                cloudGeometry = new THREE.Geometry().setFromPoints(cloudVertices);
            });

            //init function
            renderer.setSize(window.innerWidth, window.innerHeight);
            renderer.setClearColor(0x000000, 0);
            var controls = new OrbitControls(camera, renderer.domElement);
            controls.enableRotate = false;
            controls.enableZoom = false;
            controls.update();
            $('.canvas-wrap').append(renderer.domElement);

            /* GEOMETRY */
            var mat = new THREE.ShaderMaterial({
                extensions: {
                    derivatives: "#extension GL_OES_standard_derivatives : enable"
                },
                uniforms: uniforms,
                vertexShader: s.vs,
                fragmentShader: s.fs,
            });

            var pointsMat = new THREE.PointsMaterial({
                size: 1,
                color: 0xE4AC25,
                sizeAttenuation: false,
                morphTargets: true,
            });

            geometry = new THREE.BufferGeometry();
            geometry.morphAttributes.position = [];

            var positions = new Float32Array(MAX_POINTS * 3);
            geometry.setAttribute('position', new THREE.BufferAttribute(positions, 3));
            geometry.computeBoundingSphere();

            particles = new THREE.Points(geometry, mat);

            rotateObject = new THREE.Object3D();
            rotateObject.add(particles);
            scene.add(rotateObject);
            animate();

            var helper;
            var timeout = null;

            window.addEventListener("mousemove", event => {
                mouse.x = (event.clientX / window.innerWidth) * 2 - 1;
                mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;

                raycaster.setFromCamera(mouse, camera);

                var hover = raycaster.ray.intersectPlane(plane, uniforms.mouse.value);
                rotateObject.worldToLocal(hover);

                clearTimeout(timeout);
                var tween = new TimelineMax();
                tween.to(uniforms.radius, 0.5, {
                    value: 50,
                });
                tween.play();

                timeout = setTimeout(function() {
                    tween.to(uniforms.radius, 0.75, {
                        value: 0,
                    });
                    tween.play();
                }, 10);
            });
            var pos = particles.geometry.attributes.position;

            function render(a) {

                if (rendering == 'cloud') {
                    targetGeometry = cloudGeometry;
                    // rotateObject.rotation.y += 0.003;
                }

                if (targetGeometry && particles.geometry) {
                    for (var i = 0, j = particles.geometry.attributes.position.array.length / 3; i < j; i++) {
                        var p = i * 3;
                        if (!particles.geometry.attributes.position.array[i]) {
                            particles.geometry.attributes.position.array[i] = Math.random() * 1000 - 500;
                        }
                        particles.geometry.attributes.position.array[p] -= (particles.geometry.attributes.position.array[p] - targetGeometry.vertices[i].x) * 0.08;
                        particles.geometry.attributes.position.array[p + 1] -= (particles.geometry.attributes.position.array[p + 1] - targetGeometry.vertices[i].y) * 0.08;
                        particles.geometry.attributes.position.array[p + 2] -= (particles.geometry.attributes.position.array[p + 2] - targetGeometry.vertices[i].z) * 0.08;
                    }
                }
                particles.geometry.attributes.position.needsUpdate = true;

                camera.updateMatrixWorld();
                camera.updateProjectionMatrix();

                renderer.setAnimationLoop(() => {
                    const time = clock.getElapsedTime() * 0.2;
                    uniforms.time.value = time;
                    renderer.render(scene, camera)
                });
                count += 0.1;
            }

            function animate() {
                requestAnimationFrame(animate);
                render();
            }
        }
    window.ns = namespace;

})(jQuery);

enter image description here

...