0 точность с LSTM - PullRequest
       38

0 точность с LSTM

8 голосов
/ 18 июня 2020

Я обучил модель классификации LSTM, но получил странные результаты (точность 0). Вот мой набор данных с этапами предварительной обработки:

import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
import numpy as np

url = 'https://raw.githubusercontent.com/MislavSag/trademl/master/trademl/modeling/random_forest/X_TEST.csv'
X_TEST = pd.read_csv(url, sep=',')
url = 'https://raw.githubusercontent.com/MislavSag/trademl/master/trademl/modeling/random_forest/labeling_info_TEST.csv'
labeling_info_TEST = pd.read_csv(url, sep=',')


# TRAIN TEST SPLIT
X_train, X_test, y_train, y_test = train_test_split(
    X_TEST.drop(columns=['close_orig']), labeling_info_TEST['bin'],
    test_size=0.10, shuffle=False, stratify=None)


### PREPARE LSTM
x = X_train['close'].values.reshape(-1, 1)
y = y_train.values.reshape(-1, 1)
x_test = X_test['close'].values.reshape(-1, 1)
y_test = y_test.values.reshape(-1, 1)
train_val_index_split = 0.75
train_generator = keras.preprocessing.sequence.TimeseriesGenerator(
    data=x,
    targets=y,
    length=30,
    sampling_rate=1,
    stride=1,
    start_index=0,
    end_index=int(train_val_index_split*X_TEST.shape[0]),
    shuffle=False,
    reverse=False,
    batch_size=128
)
validation_generator = keras.preprocessing.sequence.TimeseriesGenerator(
    data=x,
    targets=y,
    length=30,
    sampling_rate=1,
    stride=1,
    start_index=int((train_val_index_split*X_TEST.shape[0] + 1)),
    end_index=None,  #int(train_test_index_split*X.shape[0])
    shuffle=False,
    reverse=False,
    batch_size=128
)
test_generator = keras.preprocessing.sequence.TimeseriesGenerator(
    data=x_test,
    targets=y_test,
    length=30,
    sampling_rate=1,
    stride=1,
    start_index=0,
    end_index=None,
    shuffle=False,
    reverse=False,
    batch_size=128
)

# convert generator to inmemory 3D series (if enough RAM)
def generator_to_obj(generator):
    xlist = []
    ylist = []
    for i in range(len(generator)):
        x, y = train_generator[i]
        xlist.append(x)
        ylist.append(y)
    X_train = np.concatenate(xlist, axis=0)
    y_train = np.concatenate(ylist, axis=0)
    return X_train, y_train

X_train_lstm, y_train_lstm = generator_to_obj(train_generator)
X_val_lstm, y_val_lstm = generator_to_obj(validation_generator)
X_test_lstm, y_test_lstm = generator_to_obj(test_generator)

# test for shapes
print('X and y shape train: ', X_train_lstm.shape, y_train_lstm.shape)
print('X and y shape validate: ', X_val_lstm.shape, y_val_lstm.shape)
print('X and y shape test: ', X_test_lstm.shape, y_test_lstm.shape)

, а вот моя модель с повторными версиями:

### MODEL
model = keras.models.Sequential([
        keras.layers.LSTM(124, return_sequences=True, input_shape=[None, 1]),
        keras.layers.LSTM(258),
        keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train_lstm, y_train_lstm, epochs=10, batch_size=128,
                    validation_data=[X_val_lstm, y_val_lstm])
# history = model.fit_generator(train_generator, epochs=40, validation_data=validation_generator, verbose=1)
score, acc = model.evaluate(X_val_lstm, y_val_lstm,
                            batch_size=128)

historydf = pd.DataFrame(history.history)
historydf.head(10)

Почему я получаю точность 0?

1 Ответ

10 голосов
/ 21 июня 2020

Вы используете сигмовидную активацию, что означает, что ваши метки должны находиться в диапазоне от 0 до 1. Но в вашем случае метки: 1. и -1.

Просто замените -1 на 0.

for i, y in enumerate(y_train_lstm):
    if y == -1.:
        y_train_lstm[i,:] = 0. 
for i, y in enumerate(y_val_lstm):
    if y == -1.:
        y_val_lstm[i,:] = 0. 

for i, y in enumerate(y_test_lstm):
    if y == -1.:
        y_test_lstm[i,:] = 0. 

Примечание:

enter image description here

The signals are very close, it would be hard to distinguish them. So, probably accuracy won't be high with simple models.

After training with 0. and 1. labels,

model = keras.models.Sequential([
        keras.layers.LSTM(124, return_sequences=True, input_shape=(30, 1)),
        keras.layers.LSTM(258),
        keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train_lstm, y_train_lstm, epochs=5, batch_size=128,
                    validation_data=(X_val_lstm, y_val_lstm))
# history = model.fit_generator(train_generator, epochs=40, validation_data=validation_generator, verbose=1)
score, acc = model.evaluate(X_val_lstm, y_val_lstm,
                            batch_size=128)

historydf = pd.DataFrame(history.history)
historydf.head(10)
Epoch 1/5
12/12 [==============================] - 5s 378ms/step - loss: 0.7386 - accuracy: 0.4990 - val_loss: 0.6959 - val_accuracy: 0.4896
Epoch 2/5
12/12 [==============================] - 4s 318ms/step - loss: 0.6947 - accuracy: 0.5133 - val_loss: 0.6959 - val_accuracy: 0.5104
Epoch 3/5
12/12 [==============================] - 4s 318ms/step - loss: 0.6941 - accuracy: 0.4895 - val_loss: 0.6930 - val_accuracy: 0.5104
Epoch 4/5
12/12 [==============================] - 4s 332ms/step - loss: 0.6946 - accuracy: 0.5269 - val_loss: 0.6946 - val_accuracy: 0.5104
Epoch 5/5
12/12 [==============================] - 4s 334ms/step - loss: 0.6931 - accuracy: 0.4901 - val_loss: 0.6929 - val_accuracy: 0.5104
3/3 [==============================] - 0s 73ms/step - loss: 0.6929 - accuracy: 0.5104

    loss    accuracy    val_loss    val_accuracy
0   0.738649    0.498980    0.695888    0.489583
1   0.694708    0.513256    0.695942    0.510417
2   0.694117    0.489463    0.692987    0.510417
3   0.694554    0.526852    0.694613    0.510417
4   0.693118    0.490143    0.692936    0.510417

Source code in colab: https://colab.research.google.com/drive/10yRf4TfGDnp_4F2HYoxPyTlF18no-8Dr?usp=sharing

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...