обновленный ответ
Я не уверен, но я предполагаю, что вы действительно хотите отфильтровать все значения, которые больше / меньше, чем mean(x) -/+ 2*sd(x)
, и это по каждой группе . Это сделает следующий подход. В случае набора данных Diamond ggplot2
s он сохраняет около 97% всех значений и просто удаляет крайние значения.
library(tidyverse)
diamonds %>%
group_by(cut, color) %>%
mutate(across(c(x,y,z),
list(low = ~ mean(.x, na.rm = TRUE) - 2 * sd(.x, na.rm = TRUE),
high = ~ mean(.x, na.rm = TRUE) + 2 * sd(.x, na.rm = TRUE))
)
) %>%
filter(x >= x_low & x <= x_high,
y >= x_low & y <= y_high,
z >= z_low & z <= z_high)
#> # A tibble: 52,299 x 16
#> # Groups: cut, color [35]
#> carat cut color clarity depth table price x y z x_low x_high
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43 3.51 6.92
#> 2 0.21 Prem~ E SI1 59.8 61 326 3.89 3.84 2.31 3.52 7.65
#> 3 0.290 Prem~ I VS2 62.4 58 334 4.2 4.23 2.63 3.86 9.12
#> 4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75 4.14 8.62
#> 5 0.24 Very~ I VVS1 62.3 57 336 3.95 3.98 2.47 3.92 8.62
#> 6 0.26 Very~ H SI1 61.9 55 337 4.07 4.11 2.53 3.66 8.30
#> 7 0.23 Very~ H VS1 59.4 61 338 4 4.05 2.39 3.66 8.30
#> 8 0.3 Good J SI1 64 55 339 4.25 4.28 2.73 4.14 8.62
#> 9 0.23 Ideal J VS1 62.8 56 340 3.93 3.9 2.46 3.88 8.76
#> 10 0.31 Ideal J SI2 62.2 54 344 4.35 4.37 2.71 3.88 8.76
#> # ... with 52,289 more rows, and 4 more variables: y_low <dbl>, y_high <dbl>,
#> # z_low <dbl>, z_high <dbl>
Создано 23.06.2020 представителем package (v0.3.0)
старый ответ
С лучшими примерами данных мы могли бы достичь более программного c подхода. В качестве примера я использую набор данных ggplot2
s diamonds
. См. Мои комментарии в приведенном ниже коде.
library(tidyverse)
diamonds %>%
# set up your groups
nest_by(cut, color) %>%
# define in `across` for which variables you want means and conf int to be calculated
mutate(ttest = list(summarise(data, across(c(x,y,z),
~ broom::tidy(t.test(.x))))),
ttest = list(unpack(ttest, c(x, y, z), names_sep = "_") %>%
# select only the estimates and conf intervalls
select(contains("estimate"), contains("conf")))) %>%
unnest(ttest)
#> # A tibble: 35 x 12
#> # Groups: cut, color [35]
#> cut color data x_estimate y_estimate z_estimate x_conf.low x_conf.high
#> <ord> <ord> <list<tb> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Fair D [163 × 8] 6.02 5.96 3.84 5.89 6.15
#> 2 Fair E [224 × 8] 5.91 5.86 3.72 5.80 6.02
#> 3 Fair F [312 × 8] 5.99 5.93 3.79 5.89 6.09
#> 4 Fair G [314 × 8] 6.17 6.11 3.96 6.06 6.28
#> 5 Fair H [303 × 8] 6.58 6.50 4.22 6.47 6.69
#> 6 Fair I [175 × 8] 6.56 6.49 4.19 6.43 6.70
#> 7 Fair J [119 × 8] 6.75 6.68 4.32 6.55 6.95
#> 8 Good D [662 × 8] 5.62 5.63 3.50 5.55 5.69
#> 9 Good E [933 × 8] 5.62 5.63 3.50 5.56 5.68
#> 10 Good F [909 × 8] 5.69 5.71 3.54 5.63 5.76
#> # … with 25 more rows, and 4 more variables: y_conf.low <dbl>,
#> # y_conf.high <dbl>, z_conf.low <dbl>, z_conf.high <dbl>
Создано 2020-06-19 пакетом REPEX (v0.3.0)
Если вы хотите отфильтровать наблюдения на основе уверенности iIntervalls средств, вы можете изменить мой подход, описанный выше, следующим образом. Обратите внимание, что это не то же самое, что фильтрация верхних и нижних 2,5% каждой переменной, вы потеряете много данных.
library(tidyverse)
diamonds %>%
nest_by(cut, color) %>%
mutate(ttest = summarise(data, across(c(x,y,z),
~ broom::tidy(t.test(.x)))) %>%
unpack(c(x,y,z), names_sep = "_")) %>%
unpack(ttest) %>%
select(cut, color, data, contains("estimate"), contains("conf")) %>%
rowwise(cut, color) %>%
mutate(data = list(filter(data,
x >= x_conf.low & x <= x_conf.high,
y >= x_conf.low & y <= y_conf.high,
z >= z_conf.low & z <= z_conf.high))) %>%
unnest(data)
#> # A tibble: 322 x 19
#> # Groups: cut, color [30]
#> cut color carat clarity depth table price x y z x_estimate
#> <ord> <ord> <dbl> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 Fair D 0.91 SI2 62.5 66 3079 6.08 6.01 3.78 6.02
#> 2 Fair D 0.9 SI2 65.7 60 3205 5.98 5.93 3.91 6.02
#> 3 Fair D 0.9 SI2 64.7 59 3205 6.09 5.99 3.91 6.02
#> 4 Fair D 0.95 SI2 64.4 60 3384 6.06 6.02 3.89 6.02
#> 5 Fair D 0.9 SI2 64.9 57 3473 6.03 5.98 3.9 6.02
#> 6 Fair D 0.9 SI2 64.5 61 3473 6.1 6 3.9 6.02
#> 7 Fair D 0.9 SI1 64.5 61 3689 6.05 6.01 3.89 6.02
#> 8 Fair D 0.91 SI1 64.7 61 3730 6.06 5.99 3.9 6.02
#> 9 Fair D 0.9 SI2 64.6 59 3847 6.04 6.01 3.89 6.02
#> 10 Fair D 0.91 SI1 64.4 60 3855 6.08 6.04 3.9 6.02
#> # ... with 312 more rows, and 8 more variables: y_estimate <dbl>,
#> # z_estimate <dbl>, x_conf.low <dbl>, x_conf.high <dbl>, y_conf.low <dbl>,
#> # y_conf.high <dbl>, z_conf.low <dbl>, z_conf.high <dbl>
Создано 22.06.2020 пакет REPEX (v0.3.0)