У меня есть простой и понятный CNN ниже,
# creat a dummy deep net
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1,2, kernel_size=3, stride=1, padding=1, bias=True)
self.conv2 = nn.Conv2d(2,3, kernel_size=3, stride=1, padding=1, bias=True)
self.conv3 = nn.Conv2d(3,1, kernel_size=3, stride=1, padding=1, bias=True)
self.seq = nn.Sequential(
nn.Conv2d(1,5, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(5,1, kernel_size=3, stride=1, padding=1, bias=True),
)
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
out = self.relu(self.conv1(x))
out = self.conv3(self.conv2(out))
out = out + x
out = self.seq(x)
return out
5 крючков были применены к каждому слою для прямого прохода.
Hooked 0 to Conv2d(1, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Hooked 1 to Conv2d(2, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Hooked 2 to Conv2d(3, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
Hooked 3 to Sequential(
(0): Conv2d(1, 5, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): LeakyReLU(negative_slope=0.2, inplace=True)
(2): Conv2d(5, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
Hooked 4 to LeakyReLU(negative_slope=0.2, inplace=True)
Эти крючки были созданы с использованием следующих class
# ------------------The Hook class begins to calculate each layer stats
class Hook():
def __init__(self, module, backward=False):
if backward==False:
self.hook = module.register_forward_hook(self.hook_fn)
else:
self.hook = module.register_backward_hook(self.hook_fn)
self.inputMean = []
self.outputMean = []
def hook_fn(self, module, input, output):
self.inputMean.append(input[0][0,...].mean().item())#calculate only for 1st image in the batch
print('\nIn hook class input {}'.format(input[0].size()))
self.outputMean.append(output[0][0,...].mean().item())
print('In hook class outout {}'.format(output[0].size()))
# create hooks on each layer
hookF = []
for i,layer in enumerate(list(net.children())):
print('Hooked to {}'.format(layer))
hookF.append(Hook(layer))
Обратите внимание, что между Hook 1 и Hook 2 нет ReLU self.conv3(self.conv2(out))
. Таким образом, ВЫХОД HOOK1 является ВХОДОМ на HOOK2 и должен быть идентичным. НО ЭТО НЕ ПОКАЗЫВАЕТСЯ, ПОЧЕМУ? Ниже приведены выходные данные для HOOK1 и HOOK2
Hook of layer 1 (HOOK on layer 1 which is self.conv2)
... OutputMean: [0.2381615787744522, 0.2710852324962616, 0.30706286430358887, 0.26064932346343994, 0.24395985901355743]
Hook of layer 2 (HOOK on layer 2 which is self.conv3)
InputMean: [0.13127394020557404, 0.1611362248659134, 0.1457807868719101, 0.17380955815315247, 0.1537724733352661], OutputMean: ...
Эти два значения должны были быть одинаковыми, но они не совпадают.
------ Полный код показан ниже -------
import torch
import torch.nn as nn
# creat a dummy deep net
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1,2, kernel_size=3, stride=1, padding=1, bias=True)
self.conv2 = nn.Conv2d(2,3, kernel_size=3, stride=1, padding=1, bias=True)
self.conv3 = nn.Conv2d(3,1, kernel_size=3, stride=1, padding=1, bias=True)
self.seq = nn.Sequential(
nn.Conv2d(1,5, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(5,1, kernel_size=3, stride=1, padding=1, bias=True),
)
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
out = self.relu(self.conv1(x))
out = self.conv3(self.conv2(out))
out = out + x
out = self.seq(x)
return out
net = Net()
print(net)
criterion = nn.MSELoss()
# ------------------The Hook class begins to calculate each layer stats
class Hook():
def __init__(self, module, backward=False):
if backward==False:
self.hook = module.register_forward_hook(self.hook_fn)
else:
self.hook = module.register_backward_hook(self.hook_fn)
self.inputMean = []
self.outputMean = []
def hook_fn(self, module, input, output):
self.inputMean.append(input[0][0,...].mean().item())#calculate only for 1st image in the batch
print('\nIn hook class input {}'.format(input[0].size()))
self.outputMean.append(output[0][0,...].mean().item())
print('In hook class outout {}'.format(output[0].size()))
# create hooks on each layer
hookF = []
for i,layer in enumerate(list(net.children())):
print('Hooked to {}'.format(layer))
hookF.append(Hook(layer))
optimizer = torch.optim.Adam(net.parameters())
# Do 5 forward pass
for _ in range(5):
print('Iteration --------')
data = torch.rand(2,1,10,10)*10
print('Input mean is {}'.format(data[0,...].mean()))
target = data.clone()
out = net(data)
loss = criterion(out, target)
print('backward')
loss.backward()
optimizer.step()
optimizer.zero_grad()
for i,h in enumerate(hookF):
print('\n Hook of layer {}'.format(i))
print('InputMean: {}, OutputMean: {}'.format(h.inputMean, h.outputMean))
h.hook.remove()