Я новичок в Керасе и пытаюсь выполнить многоэтапный прогноз на многомерных данных. Как я могу преобразовать модель, ниже которой выполняется прогноз по одномерным данным, в модель, которая выполняет прогноз по многомерным данным?
def model_fit(train, config):
# unpack config
n_seq, n_steps, n_filters, n_kernel, n_nodes, n_epochs, n_batch = config
n_input = n_seq * n_steps
# prepare data
data = series_to_supervised(train, n_input)
train_x, train_y = data[:, :-1], data[:, -1]
train_x = train_x.reshape((train_x.shape[0], n_seq, 1, n_steps, 1))
# define model
model = Sequential()
model.add(ConvLSTM2D(filters=n_filters, kernel_size=(1,n_kernel), activation='relu',
input_shape=(n_seq, 1, n_steps, 1)))
model.add(Flatten())
model.add(Dense(n_nodes, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model