Tensorflow неправильно загружает данные: данные обычно канал x высота x ширина загружаются как высота x ширина - PullRequest
0 голосов
/ 06 августа 2020

Итак, я построил структуру, подобную DenseNet / Unet, для моей задачи компьютерного зрения. Но когда я загружаю свои изображения и маски в метод model.fit (), где-то в бэкэнде Tensorflow удаляет канальную часть моего ввода и, таким образом, отправляет тестнор неправильной формы на первый сверточный слой.

Мой объект Image_list имеет форму (количество срезов x 1 x 512 x 512). Так что в идеале вход каждого среза должен быть 1x512x512.

Ошибка:

WARNING:tensorflow:Model was constructed with shape (None, 1, 512, 512) for input Tensor("input_1:0", shape=(None, 1, 512, 512), dtype=float32), but it was called on an input with incompatible shape (None, 512, 512).

Это наводит меня на мысль, что почему-то есть ошибка с входным слоем ??

ValueError                                Traceback (most recent call last)
<ipython-input-8-a8d0a842563e> in <module>()
      1 #obj= ImageSequence(None, None,1)
----> 2 model.fit(image_list,mask_list, epochs=1 )

10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args, **kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    821       # This is the first call of __call__, so we have to initialize.
    822       initializers = []
--> 823       self._initialize(args, kwds, add_initializers_to=initializers)
    824     finally:
    825       # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    695     self._concrete_stateful_fn = (
    696         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 697             *args, **kwds))
    698 
    699     def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2853       args, kwargs = None, None
   2854     with self._lock:
-> 2855       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2856     return graph_function
   2857 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)
-> 3213       graph_function = self._create_graph_function(args, kwargs)
   3214       self._function_cache.primary[cache_key] = graph_function
   3215       return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3073             arg_names=arg_names,
   3074             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075             capture_by_value=self._capture_by_value),
   3076         self._function_attributes,
   3077         function_spec=self.function_spec,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    984         _, original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args, **func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e, "ag_error_metadata"):
--> 973               raise e.ag_error_metadata.to_exception(e)
    974             else:
    975               raise

ValueError: in user code:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self, iterator)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step  **
        outputs = model.train_step(data)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step
        y_pred = self(x, training=True)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
        outputs = call_fn(inputs, *args, **kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:386 call
        inputs, training=training, mask=mask)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
        outputs = node.layer(*args, **kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
        self.name)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:196 assert_input_compatibility
        str(x.shape.as_list()))

    ValueError: Input 0 of layer conv2d is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 512, 512]

Мой код можно найти здесь: https://colab.research.google.com/drive/1FwuS2Wa589CvbiqOgAznqqnbKruez9Nj?usp=sharing

Пример набора данных: https://drive.google.com/drive/folders/1K4zL49pnDQsQDagCgHZko8jbtN-UNfX0?usp=sharing

1 Ответ

0 голосов
/ 06 августа 2020

Ваш генератор данных возвращает список NumPy массивов, список массивов можно интерпретировать как несколько входов. Попробуйте преобразовать данные в тензорную форму перед вызовом модели .fit ():

`image_list = tf.convert_to_tensor(image_list)

mask_list = tf.convert_to_tensor(mask_list)`
...