Как добавить граничные ограничения к сплайну с помощью geomdl или другой библиотеки? - PullRequest
0 голосов
/ 08 мая 2020

Вот сплайн без ограничений:

from geomdl import fitting
from geomdl.visualization import VisMPL
path =  [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
degree = 3
curve = fitting.interpolate_curve(path, degree)
curve.vis = VisMPL.VisCurve3D()
curve.render()
# the following is to show it under matplotlib and prepare solutions comparison
import numpy as np
import matplotlib.pyplot as plt
qtPoints = 3*len(path)
s = np.linspace(0, 1, qtPoints, True).tolist()
pt = curve.tangent(s) # returns points and tangents
spline = [u for u, v in pt] # get points, leave tangents

enter image description here

Я хочу добавить ограничения:

  • x > = -35
  • x <= 2077 </li>
  • y <= 2802 </li>

Библиотека geomdl не предлагает сплайны с ограничениями. Я пробовал этот хак, просто исправляя точки, чтобы они оставались в пределах границ:

path2 = [(x if x >= -35 else -35, y if y <= 2802 else 2802, z) for x,y,z in spline]
path2 = [(x if x <= 2077 else 2077, y, z) for x,y,z in path2]
curve2 = fitting.interpolate_curve(path2, 3)
pt2 = curve2.tangent(s) # returns points and tangents
spline2 = [u for u, v in pt2] # get points, leave tangents
plt.plot([u[0] for u in path], [u[1] for u in path], 'o', 
    [u[0] for u in spline], [u[1] for u in spline], 'b',
    [u[0] for u in spline2], [u[1] for u in spline2], 'r')
plt.show()

curve2.vis = VisMPL.VisCurve3D()
curve2.render()

enter image description here

Вот оба вместе (повернут на 90 ° влево) :

enter image description here

Результат неудовлетворительный (красным):

enter image description here

enter image description here

Другой способ - использовать путь непосредственно в качестве контрольных точек. Вот результат с NURBS:

from geomdl import NURBS
curve_n = NURBS.Curve()
curve_n.degree = min(degree, len(path)) # order = degree+1
curve_n.ctrlpts = path
last_knot = len(path) - curve_n.degree
curve_n.knotvector = np.concatenate((np.zeros(curve_n.degree), np.arange(0, last_knot + 1), np.ones(curve_n.degree)*last_knot)).astype(int)
curve_n.delta = 0.05
spline_n = curve_n.evalpts
plt.plot([u[0] for u in path], [u[1] for u in path], 'o', 
    [u[0] for u in spline_f], [u[1] for u in spline_f], 'b',
    [u[0] for u in spline2], [u[1] for u in spline2], 'r',
    [u[0] for u in spline_n], [u[1] for u in spline_n], 'g')
plt.show()

enter image description here

Результат (зеленый) находится слишком далеко от пути.

Если я использую точки NURBS для выполнения новой настройки и поиграю со степенью NURBS, я получаю что-то удовлетворительное:

from geomdl import fitting
from geomdl import NURBS
#from geomdl.visualization import VisMPL
import numpy as np
import matplotlib.pyplot as plt
path =  [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
degree = 3
qtPoints = 3*len(path)

# fitting without constraints
curve_f = fitting.interpolate_curve(path, degree)
#curve.vis = VisMPL.VisCurve3D()
#curve.render()
s = np.linspace(0, 1, qtPoints, True).tolist()
pt = curve_f.tangent(s) # returns points and tangents
spline  = [u for u, v in pt] # get points, leave tangents

# fitting with constraints, awkward hack
path2 = [(x if x >= -35 else -35, y if y <= 2802 else 2802, z) for x,y,z in spline]
path2 = [(x if x <= 2077 else 2077, y, z) for x,y,z in path2]
curve2 = fitting.interpolate_curve(path2, 3)
pt2 = curve2.tangent(s) # returns points and tangents
spline2 = [u for u, v in pt2] # get points, leave tangents

# control points = path
curve_n = NURBS.Curve()
curve_n.degree = 2 #min(degree, len(path)) # order = degree+1
curve_n.ctrlpts = path
last_knot = len(path) - curve_n.degree
curve_n.knotvector = np.concatenate((np.zeros(curve_n.degree), np.arange(0, last_knot + 1), np.ones(curve_n.degree)*last_knot)).astype(int)
curve_n.delta = 0.05
spline_n = curve_n.evalpts

# fitting without constraints on NURBS points
curve3 = fitting.interpolate_curve(spline_n, 3)
pt3 = curve3.tangent(s) # returns points and tangents
spline3 = [u for u, v in pt3] # get points, leave tangents

plt.plot([u[0] for u in path], [u[1] for u in path], 'o', 
    [u[0] for u in spline_f], [u[1] for u in spline_f], 'b',
    [u[0] for u in spline2], [u[1] for u in spline2], 'r',
    [u[0] for u in spline3], [u[1] for u in spline3], 'y',
    [u[0] for u in spline_n], [u[1] for u in spline_n], 'g')
plt.show()

enter image description here

Но это не является надежным и, возможно, просто печально известным DIY.

[True if x >= -35 and x <= 2077 and y <= 2802 else False for x,y,z in spline3]
[True, False, False, False, False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, True, True, False, False, False, False, True, True, True, True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, True, True, True]

Как сохранить плавность на пути и с учетом ограничений, пожалуйста, возможно, с другой библиотекой? Я нашел это , но это решает ограничения производных, и я не понимаю, как адаптировать это решение. Я поднял также вопрос со строго математической точки зрения здесь .

1 Ответ

0 голосов
/ 09 мая 2020

Ну, крутой топи c, но я получил его, вдохновленный этим для 2D граничных (производных) ограниченных сплайнов. Предлагаемое решение также использует scipy.optimize.minimize.

Вот полный код и после некоторых пояснений:

import numpy as np
from scipy.interpolate import UnivariateSpline, splev, splprep, BSpline
from scipy.optimize import minimize

xmin = -35
xmax = 2077
ymax = 2802

def guess(p, k, s, w=None):
    """Do an ordinary spline fit to provide knots"""
    return splprep(p, w, k=k, s=s)

def err(c, p, u, t, c_shape, k, w=None):
    """The error function to minimize"""
    diff = (np.array(p) - splev(u, (t, c.reshape(c_shape), k))).flatten()
    if w is None:
        diff = (diff*diff).sum()
    else:
        diff = (diff*diff*w).sum() #not sure it is the good way to multiply w
    return np.abs(diff)

def constraint(c, l, t, c_shape, k, eqorineq, eqinterv):
    X = np.linspace(0, 1, l*20)
    v = splev(X, (t, c.reshape(c_shape), k))
    if eqorineq == 'ineq':
        ineq_contrib =  sum([(x < xmin)*(x-xmin)**2 + (x > xmax)*(x-xmax)**2 for x in v[0]] \
            + [(y > ymax)*(y-ymax)**2 for y in v[1]])
        eq_contrib = 0
        for i in range(len(X)):
            eq_contrib += (X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1]) * (v[0][i] - xmin)**2 \
                + (X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1]) * (v[0][i] - xmax)**2 \
                + (X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1]) * (v[1][i] - ymax)**2
        return -(ineq_contrib + eq_contrib)
#        return -1 * ineq_contrib
    elif eqorineq == 'eq':
        res = 0 # equality
        for i in range(len(X)):
            if X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1] and v[0][i] != xmin \
                or X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1] and v[0][i] != xmax \
                or X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1] and v[1][i] != ymax :
                res = 1
        return res

def spline_neumann(p, k=3, s=0, w=None):
    tck, u = guess(p, k, s, w=w)
    t, c0, k = tck
    c0flat = np.array(c0).flatten()
    c_shape = np.array(c0).shape
    x0 = 0 #x[0] # point at which zero slope is required

    # compute u intervals for eq constraints
    xmin_umin = xmin_umax = xmax_umin = xmax_umax = ymax_umin = ymax_umax = -1
    for i in range(len(p[0])):
        if xmin_umin == -1 and p[0][i] <= xmin : xmin_umin = u[i] 
        if xmin_umin != -1 and xmin_umax == -1 and p[0][i] > xmin : xmin_umax = u[i-1] 
        if xmax_umin == -1 and p[0][i] >= xmax : xmax_umin = u[i] 
        if xmax_umin != -1 and xmax_umax == -1 and p[0][i] < xmax : xmax_umax = u[i-1] 
        if ymax_umin == -1 and p[1][i] >= ymax : ymax_umin = u[i] 
        if ymax_umin != -1 and ymax_umax == -1 and p[1][i] < ymax : ymax_umax = u[i-1] 
    eqinterv = [[xmin_umin, xmin_umax], [xmax_umin, xmax_umax], [ymax_umin, ymax_umax]]
    for i in range(len(eqinterv)):
        if eqinterv[i][0] == -1 : eqinterv[i][0] = 0
        if eqinterv[i][1] == -1 : eqinterv[i][1] = 1
    print("eqinterv = ", eqinterv)

    con = {'type': 'ineq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv)
           #'type': 'eq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'eq', eqinterv)
           #'fun': lambda c: splev(x0, (t, c.reshape(c_shape), k), der=1),
           #'jac': lambda c: splev(x0, (t, c, k), der=2) # doesn't help, dunno why
           }
    opt = minimize(err, c0flat, (p, u, t, c_shape, k, w), constraints=con)
    #opt = minimize(err, c0, (p, u, t, c_shape, k, w), method='Nelder-Mead', constraints=con)
    #opt = minimize(err, c0flat, (p, u, t, c_shape, k, w))
    copt = opt.x.reshape(c_shape)
    #return UnivariateSpline._from_tck((t, copt, k))
    #return BSpline(t, k, copt)
    return ((t, copt, k), opt.success)

import matplotlib.pyplot as plt

path =  [(2077.0, 712.0, 1136.6176470588234), (2077.0004154771536, 974.630482962754, 1313.735294117647), (2077.1630960823995, 1302.460574562254, 1490.8529411764707), (2078.1944091179635, 1674.693193015173, 1667.9705882352941), (2080.5096120056783, 2086.976611915444, 1845.0882352941176), (2085.1051468332066, 2711.054258877495, 2022.2058823529412), (1477.0846185328733, 2803.6223679691457, 2199.323529411765), (948.4693105162195, 2802.0390667447105, 2376.4411764705883), (383.8615403256207, 2804.843424134807, 2553.5588235294117), (-41.6669725172834, 2497.067373170676, 2730.676470588235), (-37.94311919744064, 1970.5155845437525, 2907.794117647059), (-35.97395938535092, 1576.713103381243, 3084.9117647058824), (-35.125016151504795, 1214.2319876178394, 3262.029411764706), (-35.000550767864524, 893.3910350913443, 3439.1470588235297), (-35.0, 631.2108462417168, 3616.264705882353), (-35.0, 365.60545190581837, 3793.3823529411766), (-35.0, 100.00005756991993, 3970.5)]
pathxyz = [[x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path]]
n = len(path)
#std would be interesting to define as the standard deviation of the curve compared to a no noise one. No noise ==> s=0
k = 5
s = 0
sp0, u = guess(pathxyz, k, s)
sp, success = spline_neumann(pathxyz, k, s) #s=n*std
print("success = ", success)
# % of points not respecting the constraints
perfo_vs_ineq = (sum([(x < xmin) for x in v[0]]) + sum([(x > xmax) for x in v[0]]) + sum([(y > ymax) for y in v[1]]) )/len(v[0])/2
print("perfo% vs ineq constraints = ", perfo_vs_ineq)

X = np.linspace(0, 1, len(pathxyz)*10)
val0 = splev(X, sp0)
val = splev(X, sp)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot([x for x,y,z in path], [y for x,y,z in path], [z for x,y,z in path], 'ro')
ax.plot(val0[0], val0[1], val0[2], 'b-')
ax.plot(val[0], val[1], val[2], 'r-')
plt.show()

plt.figure()
plt.plot(val0[0], val0[1], '-b', lw=1, label='guess')
plt.plot(val[0], val[1], '-r', lw=2, label='spline')
plt.plot(pathxyz[0], pathxyz[1], 'ok', label='data')
plt.legend(loc='best')
plt.show()

В конце у меня есть как 2D, так и 3D рендеринг. 3D-вид показывает, что сплайн использует оси Z для сглаживания. Это неудовлетворительно для моего варианта использования, поэтому мне придется учесть это в моих ограничениях, но это выходит за рамки этого вопроса / ответа:

enter image description here

enter image description here

И 2D-вид, который показывает влияние ограничений на сплайн:

enter image description here

Синяя кривая без ограничений, а красная с.

Теперь объяснения пути вперед:

  • Сплайн без ограничений вычисляется с помощью: sp0, u = guess(pathxyz, k, s)
  • Сплайн с ограничениями вычисляется с помощью: sp, success = spline_neumann(pathxyz, k, s)
  • Затем он печатает success после scipy.optimize.minimize критериев и пользовательских критериев, основанных на ограничениях неравенств, в виде процента точек, не удовлетворяющих ограничениям. :
    print("success = ", success)
    perfo_vs_ineq = (sum([(x < xmin) for x in v[0]]) + sum([(x > xmax) for x in v[0]]) + sum([(y > ymax) for y in v[1]]) )/len(v[0])/2
    print("perfo% vs ineq constraints = ", perfo_vs_ineq)
  • Оптимизация при ограничениях выполняется: opt = minimize(err, c0flat, (p, u, t, c_shape, k, w), constraints=con). Он оптимизирует коэффициенты сплайна, инициализированного с помощью c0flat, полученного неограниченным решением
  • Он возвращает коэффициенты в copt = opt.x, которые мы должны изменить, чтобы их можно было использовать splev с copt = opt.x.reshape(c_shape)
  • splev используется для оценки обоих сплайнов - неограниченного и ограниченного - здесь ничего нового:
X = np.linspace(0, 1, len(pathxyz)*10)
val0 = splev(X, sp0)
val = splev(X, sp)
  • Аргументы scipy.optimize.minimize и возвращаемые значения объяснены в руководство . Поэтому я собираюсь объяснить только то, что указано c здесь
  • err - это стоимость , которую нужно минимизировать. Он создан для привязки к контрольным точкам:
def err(c, p, u, t, c_shape, k, w=None):
    """The error function to minimize"""
    diff = (np.array(p) - splev(u, (t, c.reshape(c_shape), k))).flatten()
    if w is None:
        diff = (diff*diff).sum()
    else:
        diff = (diff*diff*w).sum() #not sure it is the good way to multiply w
    return np.abs(diff)
  • Я не тестировал с аргументом веса w. Здесь важно понимать, что мы выполняем оценку только для контрольных точек, используя криволинейные координаты, предоставленные u. Стоимость - это разница между контрольными точками и тем, как они оцениваются с помощью новых вычисленных коэффициентов c попробовал scipy.optimize.minimize
  • И затем мы подошли к ограничениям, предоставленным scipy.optimize.minimize определенным constraints=con как:
    con = {'type': 'ineq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv)
           #'type': 'eq', 'fun': lambda c: constraint(c, len(p[0]), t, c_shape, k, 'eq', eqinterv)
  • Я использую только ineq ualities, поскольку тесты с eq ualities дают плохие результаты в моем случае использования, но я позволил коду, если он может кому-то помочь . Таким образом, как неравенства, так и ограничения равенств вычисляются с помощью функции constraint(c, len(p[0]), t, c_shape, k, 'ineq', eqinterv). Я предпочел одну функцию вместо списка, чтобы выполнить оценку сплайна только один раз. Итак, конечно, c - это аргумент, оцениваемый scipy.optimize.minimize, t и k, завершающий (t,c,k) кортеж, необходимый для оценки, len(p[0]) относится к количеству баллов для оценки, которое пропорционально, 'ineq' указывает constraint иметь дело с неравенствами, а eqinterv - вектор, в котором я хочу оценить равенства, вычисленные как затраты. В моем случае использования, я помню, мне нужно x >= -35 and x <= 2077 and y <= 2802. Я не детализирую расчет, который указан c для моего варианта использования, я только подчеркиваю точку, в которой интервалы связаны с криволинейными координатами, однородными с u:
    xmin_umin = xmin_umax = xmax_umin = xmax_umax = ymax_umin = ymax_umax = -1
    for i in range(len(p[0])):
        if xmin_umin == -1 and p[0][i] <= xmin : xmin_umin = u[i] 
        if xmin_umin != -1 and xmin_umax == -1 and p[0][i] > xmin : xmin_umax = u[i-1] 
        if xmax_umin == -1 and p[0][i] >= xmax : xmax_umin = u[i] 
        if xmax_umin != -1 and xmax_umax == -1 and p[0][i] < xmax : xmax_umax = u[i-1] 
        if ymax_umin == -1 and p[1][i] >= ymax : ymax_umin = u[i] 
        if ymax_umin != -1 and ymax_umax == -1 and p[1][i] < ymax : ymax_umax = u[i-1] 
  • Затем стоимость равенств вычисляется следующим образом:
        eq_contrib = 0
        for i in range(len(X)):
            eq_contrib += (X[i] >= eqinterv[0][0] and X[i] <= eqinterv[0][1]) * (v[0][i] - xmin)**2 \
                + (X[i] >= eqinterv[1][0] and X[i] <= eqinterv[1][1]) * (v[0][i] - xmax)**2 \
                + (X[i] >= eqinterv[2][0] and X[i] <= eqinterv[2][1]) * (v[1][i] - ymax)**2
  • Стоимость неравенств проста:
        ineq_contrib =  sum([(x < xmin)*(x-xmin)**2 + (x > xmax)*(x-xmax)**2 for x in v[0]] \
            + [(y > ymax)*(y-ymax)**2 for y in v[1]])

Вот и все, надеемся, что это полезно .

...