Это должно сработать:
from azureml.core import Workspace
from azureml.core.environment import Environment
from azureml.train.estimator import Estimator
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core import Experiment
ws = Workspace (...)
exp = Experiment(ws, 'test-so-exp')
myenv = Environment(name = "myenv")
myenv.docker.enabled = True
dockerfile = r"""
FROM mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04
RUN apt-get update && apt-get install -y libgl1-mesa-glx
RUN echo "Hello from custom container!"
"""
myenv.docker.base_image = None
myenv.docker.base_dockerfile = dockerfile
## You need to instead put your packages in the Environment definition instead...
## see below for some changes too
myenv.python.conda_dependencies = CondaDependencies.create(pip_packages = ['scipy==1.1.0', 'torch==1.5.1'])
Наконец, вы можете построить свой оценщик немного иначе:
est = Estimator(
source_directory = '.',
# script_params = script_params,
# use_gpu = True,
compute_target = 'gpu-cluster-1',
# pip_packages = ['scipy==1.1.0', 'torch==1.5.1'],
entry_script = 'AzureEntry.py',
environment_definition=myenv
)
И отправить его:
run = exp.submit(config = est)
run.wait_for_completion(show_output=True)
Позвольте нам знаю, работает ли это.