У меня есть приведенный ниже код для поиска пути A *, однако на поиск решения с использованием простого массива 1024 x 1024 требуется более 10 минут.
Мне пришлось закомментировать //Collections.sort (this.openList); так как бросал метод сравнения нарушает его общий договор! ошибка при запуске.
Правильный ли алгоритм и есть ли идеи, почему узкое место? Некоторые люди, использующие C ++, получают время отклика 40 мс, а не 10+ минут!
При использовании массива maze
он делает это в мгновение ока, но при этом используется что-то вроде массива 14x10, а чем 1024 из collisionMap
.
Метод имеет какие-либо недостатки? Или используете неправильные структуры данных?
import java.util.List;
import javax.imageio.ImageIO;
import java.awt.Canvas;
import java.awt.Color;
import java.awt.GraphicsConfiguration;
import java.awt.Paint;
import java.awt.image.BufferedImage;
import java.io.Console;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
class AStarTwo {
// Closed list, open list and calculatedPath lists
private final List<Node> openList;
private final List<Node> closedList;
private final List<Node> calcPath;
// Collision Map to store tha map in
private final int[][] collisionMap;
// Current node the program is executing
private Node currentNode;
// Define the start and end coords
private final int xstart;
private final int ystart;
private int xEnd, yEnd;
// Node class
static class Node implements Comparable {
public Node parent;
public int x, y;
public double g;
public double h;
Node(Node parent, int xpos, int ypos, double g, double h) {
this.parent = parent;
this.x = xpos;
this.y = ypos;
this.g = g;
this.h = h;
}
// Compare f value (g + h)
@Override
public int compareTo(Object o) {
Node that = (Node) o;
return (int)((this.g + this.h) - (that.g + that.h));
}
}
// construct and initialise
public AStarTwo(int[][] collisionMap, int xstart, int ystart) {
this.openList = new ArrayList<>();
this.closedList = new ArrayList<>();
this.calcPath = new ArrayList<>();
this.collisionMap = collisionMap;
this.currentNode = new Node(null, xstart, ystart, 0, 0);
this.xstart = xstart;
this.ystart = ystart;
}
// returns a List<> of nodes to target
public List<Node> findPathTo(int xTo, int yTo) {
this.xEnd = xTo;
this.yEnd = yTo;
// Add this to the closed list
this.closedList.add(this.currentNode);
// Add neighbours to openList for iteration
addNeigborsToOpenList();
// Whilst not at our target
while (this.currentNode.x != this.xEnd || this.currentNode.y != this.yEnd) {
// If nothing in the open list then return with null - handled in error message in main calling func
if (this.openList.isEmpty()) {
return null;
}
// get the lowest f value and add it to the closed list, f calculated when neighbours are sorted
this.currentNode = this.openList.get(0);
this.openList.remove(0);
this.closedList.add(this.currentNode);
addNeigborsToOpenList();
}
// add this node to the calculated path
this.calcPath.add(0, this.currentNode);
while (this.currentNode.x != this.xstart || this.currentNode.y != this.ystart) {
this.currentNode = this.currentNode.parent;
this.calcPath.add(0, this.currentNode);
}
return this.calcPath;
}
// Searches the current list for neighbouring nodes returns bool
private static boolean checkNeighbourHasBeenSearched(List<Node> array, Node node) {
return array.stream().anyMatch((n) -> (n.x == node.x && n.y == node.y));
}
// Calculate distance from current node to the target
private double distance(int dx, int dy) {
return Math.hypot(this.currentNode.x + dx - this.xEnd, this.currentNode.y + dy - this.yEnd); // return hypothenuse
}
// Add neighbouring nodes to the open list to iterate through next
@SuppressWarnings("unchecked")
private void addNeigborsToOpenList() {
Node node;
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
node = new Node(this.currentNode, this.currentNode.x + x, this.currentNode.y + y, this.currentNode.g, this.distance(x, y));
// if we are not on the current node
if ((x != 0 || y != 0)
&& this.currentNode.x + x >= 0 && this.currentNode.x + x < this.collisionMap[0].length // check collision map boundaries
&& this.currentNode.y + y >= 0 && this.currentNode.y + y < this.collisionMap.length
&& this.collisionMap[this.currentNode.y + y][this.currentNode.x + x] != -1) { // check if tile is walkable (-1)
// and finally check we haven't already searched the nodes
if(!checkNeighbourHasBeenSearched(this.openList, node) && !checkNeighbourHasBeenSearched(this.closedList, node)){
node.g = node.parent.g + 1.; // Horizontal/vertical cost = 1.0
node.g += collisionMap[this.currentNode.y + y][this.currentNode.x + x]; // add movement cost for this square
// Add diagonal movement cost sqrt(hor_cost² + vert_cost²) + 0.4
if (x != 0 && y != 0) {
node.g += .4;
}
// Add the node to the List<>
this.openList.add(node);
}
}
}
}
// sort in ascending order
//Collections.sort(this.openList);
}
public static void main(String[] args) {
int [][] maze =
{ {1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,0,-1,0,-1,0,1,0,0,0,0,0,1},
{1,0,-1,0,0,0,1,0,1,1,1,0,1},
{1,0,0,0,-1,-1,-1,0,0,0,0,0,1},
{1,0,1,0,0,0,0,0,1,1,1,0,1},
{1,0,1,0,-1,-1,-1,0,1,0,0,0,-1},
{1,0,-1,0,-1,0,0,0,-1,-1,-1,0,-1},
{1,0,1,0,-1,-1,-1,0,1,0,-1,0,-1},
{1,0,0,0,0,0,0,0,0,0,1,0,1},
{1,1,1,1,1,1,1,1,1,1,1,1,1}
};
// Define the size of the grid
final int sizeOf = 20;
int[][] collisionMap = new int[sizeOf][];
for(int i=0;i < sizeOf; i++) {
// -1 = blocked
// 0+ = cost
collisionMap[i] = new int[sizeOf];
}
// set the value of the nodes
for (int k = 0; k < sizeOf; k++) {
for (int j = 0; j < sizeOf; j++) {
if(j == 30 && k < 100) {
collisionMap[k][j] = -1;
} else if (j == 50 && k > 230) {
collisionMap[k][j] = -1;
}else {
collisionMap[k][j] = 0;
}
}
}
AStarTwo as = new AStarTwo(maze, 9, 9);
List<Node> path = as.findPathTo(0,0);
if(path == null) {
System.out.println("Unable to reach target");
}
// create image buffer to write output to
BufferedImage img = new BufferedImage(sizeOf, sizeOf, BufferedImage.TYPE_INT_RGB);
// Set colours
int r = 255;
int g = 0;
int b = 0;
int colRed = (r << 16) | (g << 8) | b;
r = 0;
g = 255;
b = 0;
int colGreen = (r << 16) | (g << 8) | b;
r = 0;
g = 0;
b = 255;
int colBlue = (r << 16) | (g << 8) | b;
r = 255;
g = 255;
b = 255;
int colWhite = (r << 16) | (g << 8) | b;
int i = 0;
int j = 0;
if (path != null) {
path.forEach((n) -> {
System.out.print("[" + n.x + ", " + n.y + "] ");
maze[n.y][n.x] = 2;
});
for (int[] maze_row : maze) {
for (int maze_entry : maze_row) {
switch (maze_entry) {
// normal tile
case 0:
img.setRGB(j, i, colWhite);
break;
// final path
case 2:
img.setRGB(j, i, colBlue);
break;
// Object to avoid
case -1:
img.setRGB(j, i, colRed);
break;
// Any other value
default:
img.setRGB(j, i, colWhite);
}
j++;
}
// count j - reset as if it were a for loop
if(i != 12) {
j=0;
}
i++;
System.out.println();
}
}
// output file
File f = new File("aStarPath.png");
try {
ImageIO.write(img, "PNG", f);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("i: " + i + ", j: " + j);
}
}