Я хочу преобразовать slim.conv2d в tf.conv2d. Это код, использующий:
def senet(input, n_layers=13, training=True, reuse=False, norm_type="NM",
ksz=3, n_channels=32):
if norm_type == "NM": # ADAPTIVE BATCH NORM
norm_fn = nm
elif norm_type == "SBN": # BATCH NORM
norm_fn = slim.batch_norm
else: # NO LAYER NORMALIZATION
norm_fn = None
for id in range(n_layers):
if id == 0:
net = slim.conv2d(input, n_channels, [1, ksz], activation_fn=lrelu,
normalizer_fn=norm_fn, scope='se_conv_%d' % id,
padding='SAME', reuse=reuse)
else:
net, pad_elements = signal_to_dilated(net, n_channels=n_channels, dilation=2 ** id)
net = slim.conv2d(net, n_channels, [1, ksz], activation_fn=lrelu,
normalizer_fn=norm_fn, scope='se_conv_%d' % id,
padding='SAME', reuse=reuse)
net = dilated_to_signal(net, n_channels=n_channels, pad_elements=pad_elements)
net = slim.conv2d(net, n_channels, [1, ksz], activation_fn=lrelu,
normalizer_fn=norm_fn, scope='se_conv_last',
padding='SAME', reuse=reuse)
output = slim.conv2d(net, 1, [1, 1], activation_fn=None,scope='se_fc_last', padding='SAME', reuse=reuse)
return output
И я хочу добавить слой Lstm после последнего слоя. Как я могу это сделать? Любые предложения, коды и ссылки ....