Я пишу модель Res Unet в keras, но при обучении модели использую код m.compile(optimizer= sgd, loss = Dice_coef_loss, metrics=[Dice_coef, Dice_coef_loss])
отображение не совпадает.
код в под:
G = MyResUnet.MyLiverDataGenerator.imageSegmentationGenerator( tarin_image_xmls , train_batch_size, n_classes ,
input_height , input_width , input_channel, output_height , output_width , mode ='train')
sgd =keras.optimizers.SGD(lr=0.001, momentum=0.9, decay=0.0005, nesterov=True)
m = Models.ResUnet.ResUnet( n_classes , input_height=input_height,
input_width=input_width ,input_channel=input_channel ) # 这边没问题
m.summary()
m.compile(optimizer= sgd, loss = Dice_coef_loss, metrics=[Dice_coef, Dice_coef_loss])
m.fit_generator(G, samples_per_epoch = steps_per_epochs , epochs = 30,verbose = 1,
# validation_data = G_valid, nb_val_samples = steps_per_epochs_valid,
callbacks = [modelCheckpoint,tensorboard],initial_epoch=0)
код можно запускать и обучать, но отображение не соответствует действительности. 【Установить batch_size = 1】
Epoch 1/30
1/37739 [..............................] - ETA: 94:40:45 - loss: 2.6937 - Dice_coef: 0.1626 - Dice_coef_loss: 0.8374
2/37739 [..............................] - ETA: 48:02:00 - loss: 2.6776 - Dice_coef: 0.1787 - Dice_coef_loss: 0.8213
3/37739 [..............................] - ETA: 32:27:13 - loss: 2.7020 - Dice_coef: 0.1543 - Dice_coef_loss: 0.8457
4/37739 [..............................] - ETA: 24:39:58 - loss: 2.7336 - Dice_coef: 0.1227 - Dice_coef_loss: 0.8773
5/37739 [..............................] - ETA: 19:59:52 - loss: 2.7566 - Dice_coef: 0.0997 - Dice_coef_loss: 0.9003
6/37739 [..............................] - ETA: 16:53:33 - loss: 2.7729 - Dice_coef: 0.0834 - Dice_coef_loss: 0.9166
7/37739 [..............................] - ETA: 14:40:23 - loss: 2.7419 - Dice_coef: 0.1144 - Dice_coef_loss: 0.8856
8/37739 [..............................] - ETA: 12:59:53 - loss: 2.7560 - Dice_coef: 0.1003 - Dice_coef_loss: 0.8997
потери должны быть такими же, как dice_coef_loss!