Это предварительная обработка с использованием ImageDataGenerator и flow_from_directory для обучения моей модели в Keras.
train_datagen = ImageDataGenerator(rescale = 1./255)
train_dir = os.path.join(r'C:\Users\Admin\Desktop\deeplearning\ajou cat project resnet 18\data\trainset')
train_generator = train_datagen.flow_from_directory(train_dir, batch_size=16, target_size=(224, 224), color_mode='rgb')
# number of classes
K = 10
input_tensor = Input(shape=(224, 224, 3), dtype='float32', name='input')
#
# model architecture
#
x = conv1_layer(input_tensor)
x = conv2_layer(x)
x = conv3_layer(x)
x = conv4_layer(x)
x = conv5_layer(x)
x = GlobalAveragePooling2D()(x)
output_tensor = Dense(K, activation='softmax')(x)
resnet = Model(input_tensor, output_tensor)
resnet.compile(loss = 'categorical_crossentropy', optimizer = 'rmsprop', metrics = ['accuracy'])
resnet.fit(train_generator, steps_per_epoch = 11, epochs = 50)
И это для метода предварительной обработки, который я сделал для тестирования моей обученной модели с одним изображением.
target = (224, 224)
image = pilimg.open(r'C:\Users\Admin\Desktop\deeplearning\ajou cat project resnet 18\test\test.jpg')
image = image.resize(target)
image = img_to_array(image)
image = np.expand_dims(image, axis = 0)
image = image/255
Это одна и та же предварительная обработка?