Я хочу отдать должное gmatt, потому что он проделал большую работу. Единственная разница в наших ответах - это уравнение для х.
Чтобы выполнить обратное отображение сферы на куб, сначала определите грань куба, на которую проецируется точка сферы. Этот шаг прост - просто найдите компонент вектора сферы с наибольшей длиной, например, так:
// map the given unit sphere position to a unit cube position
void cubizePoint(Vector3& position) {
double x,y,z;
x = position.x;
y = position.y;
z = position.z;
double fx, fy, fz;
fx = fabsf(x);
fy = fabsf(y);
fz = fabsf(z);
if (fy >= fx && fy >= fz) {
if (y > 0) {
// top face
position.y = 1.0;
}
else {
// bottom face
position.y = -1.0;
}
}
else if (fx >= fy && fx >= fz) {
if (x > 0) {
// right face
position.x = 1.0;
}
else {
// left face
position.x = -1.0;
}
}
else {
if (z > 0) {
// front face
position.z = 1.0;
}
else {
// back face
position.z = -1.0;
}
}
}
Для каждой грани - возьмите оставшиеся компоненты вектора куба, обозначенные как s и t, и решите для них, используя эти уравнения, основанные на оставшихся компонентах вектора сферы, обозначенных как a и b:
s = sqrt(-sqrt((2 a^2-2 b^2-3)^2-24 a^2)+2 a^2-2 b^2+3)/sqrt(2)
t = sqrt(-sqrt((2 a^2-2 b^2-3)^2-24 a^2)-2 a^2+2 b^2+3)/sqrt(2)
Вы должны увидеть, что внутренний квадратный корень используется в обоих уравнениях, поэтому делайте эту часть только один раз.
Вот последняя функция с добавленными уравнениями, проверяющая 0.0 и -0.0 и код для правильной установки знака компонента куба - он должен быть равен знаку компонента сферы.
void cubizePoint2(Vector3& position)
{
double x,y,z;
x = position.x;
y = position.y;
z = position.z;
double fx, fy, fz;
fx = fabsf(x);
fy = fabsf(y);
fz = fabsf(z);
const double inverseSqrt2 = 0.70710676908493042;
if (fy >= fx && fy >= fz) {
double a2 = x * x * 2.0;
double b2 = z * z * 2.0;
double inner = -a2 + b2 -3;
double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);
if(x == 0.0 || x == -0.0) {
position.x = 0.0;
}
else {
position.x = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
}
if(z == 0.0 || z == -0.0) {
position.z = 0.0;
}
else {
position.z = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
}
if(position.x > 1.0) position.x = 1.0;
if(position.z > 1.0) position.z = 1.0;
if(x < 0) position.x = -position.x;
if(z < 0) position.z = -position.z;
if (y > 0) {
// top face
position.y = 1.0;
}
else {
// bottom face
position.y = -1.0;
}
}
else if (fx >= fy && fx >= fz) {
double a2 = y * y * 2.0;
double b2 = z * z * 2.0;
double inner = -a2 + b2 -3;
double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);
if(y == 0.0 || y == -0.0) {
position.y = 0.0;
}
else {
position.y = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
}
if(z == 0.0 || z == -0.0) {
position.z = 0.0;
}
else {
position.z = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
}
if(position.y > 1.0) position.y = 1.0;
if(position.z > 1.0) position.z = 1.0;
if(y < 0) position.y = -position.y;
if(z < 0) position.z = -position.z;
if (x > 0) {
// right face
position.x = 1.0;
}
else {
// left face
position.x = -1.0;
}
}
else {
double a2 = x * x * 2.0;
double b2 = y * y * 2.0;
double inner = -a2 + b2 -3;
double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);
if(x == 0.0 || x == -0.0) {
position.x = 0.0;
}
else {
position.x = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
}
if(y == 0.0 || y == -0.0) {
position.y = 0.0;
}
else {
position.y = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
}
if(position.x > 1.0) position.x = 1.0;
if(position.y > 1.0) position.y = 1.0;
if(x < 0) position.x = -position.x;
if(y < 0) position.y = -position.y;
if (z > 0) {
// front face
position.z = 1.0;
}
else {
// back face
position.z = -1.0;
}
}
Итак, это решение не так красиво, как отображение куба на сферу, но оно выполняет свою работу!
Будем благодарны за любые предложения по повышению эффективности или способности чтения приведенного выше кода!
--- редактировать ---
Я должен упомянуть, что я проверял это, и до сих пор в моих тестах код казался правильным, а результаты были точными, по крайней мере, с 7-м десятичным знаком. И это было с тех пор, когда я использовал плавающие числа, теперь это, вероятно, более точно с двойными числами.
--- редактировать ---
Вот оптимизированная версия шейдера фрагментов glsl от Daniel, чтобы показать, что эта функция не должна быть такой страшной. Дэниел использует это для фильтрации выборки на кубических картах! Отличная идея!
const float isqrt2 = 0.70710676908493042;
vec3 cubify(const in vec3 s)
{
float xx2 = s.x * s.x * 2.0;
float yy2 = s.y * s.y * 2.0;
vec2 v = vec2(xx2 – yy2, yy2 – xx2);
float ii = v.y – 3.0;
ii *= ii;
float isqrt = -sqrt(ii – 12.0 * xx2) + 3.0;
v = sqrt(v + isqrt);
v *= isqrt2;
return sign(s) * vec3(v, 1.0);
}
vec3 sphere2cube(const in vec3 sphere)
{
vec3 f = abs(sphere);
bool a = f.y >= f.x && f.y >= f.z;
bool b = f.x >= f.z;
return a ? cubify(sphere.xzy).xzy : b ? cubify(sphere.yzx).zxy : cubify(sphere);
}