Уменьшить количество точек в линии - PullRequest
15 голосов
/ 04 апреля 2010

Я ищу алгоритмы для уменьшения LOD полилиний, линий (зацикленных или нет) узлов. Проще говоря, я хочу взять данные береговой линии с высоким разрешением и иметь возможность уменьшить LOD в сто или тысячу раз, чтобы отобразить их в небольшом масштабе.

Я нашел алгоритмы сокращения полигонов (но они требуют треугольников) и сглаживания Лапласа, но это не совсем то, что мне нужно.

Ответы [ 8 ]

15 голосов
/ 07 июня 2012

Я изменил код в ответе знаменитости , устраняя необходимость в классах Vec2D / Line, вместо этого обрабатывая точки как список кортежей.

Код немного менее аккуратный, но короче и немного быстрее (для 900 пунктов исходный код занимал 2966мс, а эта версия - 500мс - все же немного медленнее, чем хотелось бы, но улучшение)

def _vec2d_dist(p1, p2):
    return (p1[0] - p2[0])**2 + (p1[1] - p2[1])**2


def _vec2d_sub(p1, p2):
    return (p1[0]-p2[0], p1[1]-p2[1])


def _vec2d_mult(p1, p2):
    return p1[0]*p2[0] + p1[1]*p2[1]


def ramerdouglas(line, dist):
    """Does Ramer-Douglas-Peucker simplification of a curve with `dist`
    threshold.

    `line` is a list-of-tuples, where each tuple is a 2D coordinate

    Usage is like so:

    >>> myline = [(0.0, 0.0), (1.0, 2.0), (2.0, 1.0)]
    >>> simplified = ramerdouglas(myline, dist = 1.0)
    """

    if len(line) < 3:
        return line

    (begin, end) = (line[0], line[-1]) if line[0] != line[-1] else (line[0], line[-2])

    distSq = []
    for curr in line[1:-1]:
        tmp = (
            _vec2d_dist(begin, curr) - _vec2d_mult(_vec2d_sub(end, begin), _vec2d_sub(curr, begin)) ** 2 / _vec2d_dist(begin, end))
        distSq.append(tmp)

    maxdist = max(distSq)
    if maxdist < dist ** 2:
        return [begin, end]

    pos = distSq.index(maxdist)
    return (ramerdouglas(line[:pos + 2], dist) + 
            ramerdouglas(line[pos + 1:], dist)[1:])
13 голосов
/ 05 апреля 2010

Решение, которое я нашел и, вероятно, буду использовать, - это алгоритм Ramer-Douglas-Peucker . Используется в PostGIS

Я опубликовал свою собственную реализацию на Python (сайт в настоящее время недоступен, следующее было извлечено из archive.org )

#!/usr/bin/python
"""Ramer-Douglas-Peucker line simplification demo.
Dmitri Lebedev, detail@ngs.ru

http://ryba4.com/python/ramer-douglas-peucker
2010-04-17"""

def ramerdouglas(line, dist):
    """Does Ramer-Douglas-Peucker simplification of
    a line with `dist` threshold.
    `line` must be a list of Vec objects,
    all of the same type (either 2d or 3d)."""
    if len(line) < 3:
        return line

    begin, end = line[0], line[-1]
    distSq = [begin.distSq(curr) -
        ((end - begin) * (curr - begin)) ** 2 /
        begin.distSq(end) for curr in line[1:-1]]

    maxdist = max(distSq)
    if maxdist < dist ** 2:
        return [begin, end]

    pos = distSq.index(maxdist)
    return (ramerdouglas(line[:pos + 2], dist) + 
            ramerdouglas(line[pos + 1:], dist)[1:])

class Line:
    """Polyline. Contains a list of points and outputs
    a simplified version of itself."""
    def __init__(self, points):
        pointclass = points[0].__class__
        for i in points[1:]:
            if i.__class__ != pointclass:
                raise TypeError("""All points in a Line
                                must have the same type""")
        self.points = points

    def simplify(self, dist):
        if self.points[0] != self.points[-1]:
            points = ramerdouglas(self.points, dist)
        else:
            points = ramerdouglas(
                self.points[:-1], dist) + self.points[-1:]
        return self.__class__(points)

    def __repr__(self):
        return '{0}{1}'.format(self.__class__.__name__,
            tuple(self.points))

class Vec:
    """Generic vector class for n-dimensional vectors
    for any natural n."""
    def __eq__(self, obj):
        """Equality check."""
        if self.__class__ == obj.__class__:
            return self.coords == obj.coords
        return False

    def __repr__(self):
        """String representation. The string is executable as Python
        code and makes the same vector."""
        return '{0}{1}'.format(self.__class__.__name__, self.coords)

    def __add__(self, obj):
        """Add a vector."""
        if not isinstance(obj, self.__class__):
            raise TypeError

        return self.__class__(*map(sum, zip(self.coords, obj.coords)))

    def __neg__(self):
        """Reverse the vector."""
        return self.__class__(*[-i for i in self.coords])

    def __sub__(self, obj):
        """Substract object from self."""
        if not isinstance(obj, self.__class__):
            raise TypeError

        return self + (- obj)

    def __mul__(self, obj):
        """If obj is scalar, scales the vector.
        If obj is vector returns the scalar product."""
        if isinstance(obj, self.__class__):
            return sum([a * b for (a, b) in zip(self.coords, obj.coords)])

        return self.__class__(*[i * obj for i in self.coords])

    def dist(self, obj = None):
        """Distance to another object. Leave obj empty to get
        the length of vector from point 0."""
        return self.distSq(obj) ** 0.5

    def distSq(self, obj = None):
        """ Square of distance. Use this method to save
        calculations if you don't need to calculte an extra square root."""
        if obj is None:
            obj = self.__class__(*[0]*len(self.coords))
        elif not isinstance(obj, self.__class__):
            raise TypeError('Parameter must be of the same class')

        # simple memoization to save extra calculations
        if obj.coords not in self.distSqMem:
            self.distSqMem[obj.coords] = sum([(s - o) ** 2 for (s, o) in
                zip(self.coords, obj.coords)])
        return self.distSqMem[obj.coords]

class Vec3D(Vec):
    """3D vector"""
    def __init__(self, x, y, z):
        self.coords = x, y, z
        self.distSqMem = {}

class Vec2D(Vec):
    """2D vector"""
    def __init__(self, x, y):
        self.coords = x, y
        self.distSqMem = {}

if __name__ == '__main__':
    coast = Line([
    Vec2D( 6.247872 , 11.316756 ),
    Vec2D( 6.338566 , 11.316756 ),
    Vec2D( 6.633323 , 11.205644 ),
    Vec2D( 6.724018 , 11.205644 ),
    Vec2D( 6.792039 , 11.205644 ),
    Vec2D( 7.154817 , 11.372311 ),
    Vec2D( 7.313532 , 11.400089 ),
    Vec2D( 7.381553 , 11.344533 ),
    Vec2D( 7.336206 , 11.288978 ),
    Vec2D( 7.200164 , 11.288978 ),
    Vec2D( 7.154817 , 11.261200 ),
    Vec2D( 7.132143 , 11.233422 ),
    Vec2D( 7.154817 , 11.150089 ),
    Vec2D( 7.268185 , 11.177867 ),
    Vec2D( 7.313532 , 11.122311 ),
    Vec2D( 7.404227 , 11.150089 ),
    Vec2D( 7.472248 , 11.094533 ),
    Vec2D( 7.767005 , 10.900089 ),
    Vec2D( 7.758951 , 10.864989 ),
    Vec2D( 7.752684 , 10.837656 ),
    Vec2D( 7.426900 , 10.927867 ),
    Vec2D( 6.519955 , 10.927867 ),
    Vec2D( 6.429261 , 10.900089 ),
    Vec2D( 6.315893 , 10.955644 ),
    Vec2D( 6.270545 , 10.955644 ),
    Vec2D( 6.247872 , 10.927867 ),
    Vec2D( 6.111830 , 11.011200 ),
    Vec2D( 6.066483 , 11.066756 ),
    Vec2D( 5.862420 , 11.038978 ),
    Vec2D( 5.817073 , 10.955644 ),
    Vec2D( 5.771726 , 10.900089 ),
    Vec2D( 5.862420 , 10.761200 ),
    Vec2D( 5.975788 , 10.733422 ),
    Vec2D( 6.157177 , 10.566756 ),
    Vec2D( 6.247872 , 10.511200 ),
    Vec2D( 6.293219 , 10.427867 ),
    Vec2D( 6.315893 , 10.233422 ),
    Vec2D( 6.315893 , 10.177867 ),
    Vec2D( 6.542629 , 9.844533 ),
    Vec2D( 6.587976 , 9.761200 ),
    Vec2D( 6.610650 , 9.288978 ),
    Vec2D( 6.542629 , 9.066756 ),
    Vec2D( 6.565303 , 8.900089 ),
    Vec2D( 6.519955 , 8.816756 ),
    Vec2D( 6.542629 , 8.761200 ),
    Vec2D( 6.565303 , 8.733422 ),
    Vec2D( 6.429261 , 8.427867 ),
    Vec2D( 6.474608 , 8.316756 ),
    Vec2D( 6.724018 , 8.288978 ),
    Vec2D( 6.882733 , 8.538978 ),
    Vec2D( 6.973428 , 8.594533 ),
    Vec2D( 6.996101 , 8.622311 ),
    Vec2D( 7.200164 , 8.650089 ),
    Vec2D( 7.290859 , 8.650089 ),
    Vec2D( 7.426900 , 8.483422 ),
    Vec2D( 7.404227 , 8.455644 ),
    Vec2D( 7.245511 , 8.511200 ),
    Vec2D( 6.996101 , 8.427867 ),
    Vec2D( 7.041449 , 8.372311 ),
    Vec2D( 7.154817 , 8.455644 ),
    Vec2D( 7.200164 , 8.455644 ),
    Vec2D( 7.245511 , 8.455644 ),
    Vec2D( 7.381553 , 8.316756 ),
    Vec2D( 7.381553 , 8.261200 ),
    Vec2D( 7.404227 , 8.233422 ),
    Vec2D( 7.494921 , 8.205644 ),
    Vec2D( 7.767005 , 8.288978 ),
    Vec2D( 7.948394 , 8.233422 ),
    Vec2D( 8.016415 , 8.261200 ),
    Vec2D( 8.197804 , 8.094533 ),
    Vec2D( 8.084435 , 7.816756 ),
    Vec2D( 8.152456 , 7.733422 ),
    Vec2D( 8.175130 , 7.650089 ),
    Vec2D( 8.175130 , 7.511200 ),
    Vec2D( 8.311172 , 7.427867 ),
    Vec2D( 8.311172 , 7.372311 ),
    Vec2D( 8.651276 , 7.372311 ),
    Vec2D( 8.923360 , 7.316756 ),
    Vec2D( 8.900686 , 7.261200 ),
    Vec2D( 8.809991 , 7.261200 ),
    Vec2D( 8.472735 , 7.171122 ),
    Vec2D( 8.333845 , 7.038978 ),
    Vec2D( 8.282022 , 6.981100 ),
    Vec2D( 8.254778 , 6.848911 ),
    Vec2D( 8.265824 , 6.816756 ),
    Vec2D( 8.239206 , 6.711211 ),
    Vec2D( 8.219743 , 6.612067 ),
    Vec2D( 8.130227 , 6.433044 ),
    Vec2D( 8.084435 , 6.316756 ),
    Vec2D( 8.107109 , 6.288978 ),
    Vec2D( 7.948394 , 6.177867 ),
    Vec2D( 7.925720 , 5.983422 ),
    Vec2D( 7.857699 , 5.816756 ),
    Vec2D( 7.835026 , 5.788978 ),
    Vec2D( 7.857699 , 5.511200 ),
    Vec2D( 7.812352 , 5.400089 ),
    Vec2D( 7.812352 , 5.344533 ),
    Vec2D( 7.812352 , 5.177867 ),
    Vec2D( 8.084435 , 4.733422 ),
    Vec2D( 8.107109 , 4.622311 ),
    Vec2D( 7.857699 , 4.344533 ),
    Vec2D( 7.630963 , 4.261200 ),
    Vec2D( 7.540268 , 4.177867 ),
    Vec2D( 7.494921 , 4.150089 ),
    Vec2D( 7.449574 , 4.150089 ),
    Vec2D( 7.404227 , 4.150089 ),
    Vec2D( 7.336206 , 4.094533 ),
    Vec2D( 7.313532 , 4.066756 ),
    Vec2D( 7.041449 , 4.011200 ),
    Vec2D( 6.905407 , 3.955644 ),
    Vec2D( 6.950754 , 3.900089 ),
    Vec2D( 7.200164 , 3.927867 ),
    Vec2D( 7.630963 , 3.872311 ),
    Vec2D( 7.721657 , 3.872311 ),
    Vec2D( 7.948394 , 3.788978 ),
    Vec2D( 7.993741 , 3.705644 ),
    Vec2D( 7.971067 , 3.677867 ),
    Vec2D( 7.925720 , 3.622311 ),
    Vec2D( 8.175130 , 3.705644 ),
    Vec2D( 8.401866 , 3.650089 ),
    Vec2D( 8.492561 , 3.650089 ),
    Vec2D( 8.605929 , 3.538978 ),
    Vec2D( 8.651276 , 3.566756 ),
    Vec2D( 8.855339 , 3.372311 ),
    Vec2D( 8.900686 , 3.316756 ),
    Vec2D( 8.900686 , 3.150089 ),
    Vec2D( 8.787318 , 2.900089 ),
    Vec2D( 8.787318 , 2.844533 ),
    Vec2D( 8.946033 , 2.816756 ),
    Vec2D( 8.991380 , 2.788978 ),
    Vec2D( 9.014054 , 2.705644 ),
    Vec2D( 8.886928 , 2.524989 ),
    Vec2D( 8.832665 , 2.538978 ),
    Vec2D( 8.809991 , 2.455644 ),
    Vec2D( 8.923360 , 2.538978 ),
    Vec2D( 9.014054 , 2.400089 ),
    Vec2D( 9.308811 , 2.288978 ),
    Vec2D( 9.399506 , 2.261200 ),
    Vec2D( 9.512874 , 2.122311 ),
    Vec2D( 9.535548 , 1.983422 ),
    Vec2D( 9.512874 , 1.955644 ),
    Vec2D( 9.467527 , 1.816756 ),
    Vec2D( 9.036728 , 1.816756 ),
    Vec2D( 8.991380 , 1.927867 ),
    Vec2D( 8.946033 , 1.955644 ),
    Vec2D( 8.900686 , 1.983422 ),
    Vec2D( 8.946033 , 2.122311 ),
    Vec2D( 8.968707 , 2.150089 ),
    Vec2D( 9.195443 , 1.927867 ),
    Vec2D( 9.354158 , 1.955644 ),
    Vec2D( 9.376832 , 2.038978 ),
    Vec2D( 9.376832 , 2.094533 ),
    Vec2D( 9.240790 , 2.205644 ),
    Vec2D( 9.195443 , 2.205644 ),
    Vec2D( 9.263464 , 2.150089 ),
    Vec2D( 9.240790 , 2.122311 ),
    Vec2D( 9.195443 , 2.122311 ),
    Vec2D( 9.104749 , 2.122311 ),
    Vec2D( 8.900686 , 2.316756 ),
    Vec2D( 8.787318 , 2.344533 ),
    Vec2D( 8.696623 , 2.372311 ),
    Vec2D( 8.651276 , 2.427867 ),
    Vec2D( 8.719297 , 2.455644 ),
    Vec2D( 8.787318 , 2.650089 ),
    Vec2D( 8.832665 , 2.705644 ),
    Vec2D( 8.605929 , 2.677867 ),
    Vec2D( 8.537908 , 2.788978 ),
    Vec2D( 8.333845 , 2.788978 ),
    Vec2D( 7.925720 , 2.316756 ),
    Vec2D( 7.925720 , 2.261200 ),
    Vec2D( 7.903046 , 2.233422 ),
    Vec2D( 7.857699 , 2.233422 ),
    Vec2D( 7.857699 , 2.177867 ),
    Vec2D( 7.789678 , 1.983422 ),
    Vec2D( 7.812352 , 1.788978 ),
    Vec2D( 7.948394 , 1.538978 ),
    Vec2D( 7.971067 , 1.511200 ),
    Vec2D( 8.129783 , 1.511200 ),
    Vec2D( 8.243151 , 1.594533 ),
    Vec2D( 8.333845 , 1.594533 ),
    Vec2D( 8.424540 , 1.622311 ),
    Vec2D( 8.515234 , 1.566756 ),
    Vec2D( 8.673950 , 1.400089 ),
    Vec2D( 8.771174 , 1.291756 ),
    Vec2D( 8.828938 , 1.119878 ),
    Vec2D( 8.762504 , 0.972544 ),
    Vec2D( 9.238614 , 0.759633 ),
    Vec2D( 9.492323 , 0.627022 ),
    Vec2D( 9.820891 , 0.644711 ),
    Vec2D( 10.376567 , 0.800622 ),
    Vec2D( 10.651961 , 1.085978 ),
    Vec2D( 10.762173 , 1.132022 ),
    Vec2D( 10.943045 , 1.095989 ),
    Vec2D( 11.256739 , 0.999878 ),
    Vec2D( 11.576074 , 0.761611 ),
    Vec2D( 11.768247 , 0.425211 ),
    Vec2D( 11.960165 , 0.074778 ),
    Vec2D( 11.953907 , 0.000000 ),
    Vec2D( 11.629411 , 0.258767 ),
    Vec2D( 11.229920 , 0.582278 ),
    Vec2D( 11.001633 , 0.564300 ),
    Vec2D( 10.868476 , 0.447478 ),
    Vec2D( 10.633849 , 0.541833 ),
    Vec2D( 10.513370 , 0.672133 ),
    Vec2D( 11.188700 , 0.820078 ),
    Vec2D( 11.194014 , 0.859656 ),
    Vec2D( 11.118212 , 0.905822 ),
    Vec2D( 10.874860 , 0.930311 ),
    Vec2D( 10.427319 , 0.716522 ),
    Vec2D( 10.023620 , 0.374211 ),
    Vec2D( 9.434614 , 0.360144 ),
    Vec2D( 8.455131 , 0.859544 ),
    Vec2D( 8.180481 , 0.920500 ),
    Vec2D( 7.902529 , 1.115078 ),
    Vec2D( 7.823108 , 1.269800 ),
    Vec2D( 7.830482 , 1.403778 ),
    Vec2D( 7.791937 , 1.496744 ),
    Vec2D( 7.767005 , 1.538978 ),
    Vec2D( 7.676310 , 1.622311 ),
    Vec2D( 7.653637 , 1.650089 ),
    Vec2D( 7.585616 , 1.955644 ),
    Vec2D( 7.562942 , 1.983422 ),
    Vec2D( 7.562942 , 2.233422 ),
    Vec2D( 7.608289 , 2.400089 ),
    Vec2D( 7.630963 , 2.427867 ),
    Vec2D( 7.608289 , 2.538978 ),
    Vec2D( 7.585616 , 2.566756 ),
    Vec2D( 7.653637 , 2.705644 ),
    Vec2D( 7.630963 , 2.816756 ),
    Vec2D( 7.336206 , 3.011200 ),
    Vec2D( 7.290859 , 3.011200 ),
    Vec2D( 7.245511 , 3.011200 ),
    Vec2D( 7.041449 , 2.955644 ),
    Vec2D( 6.928081 , 2.816756 ),
    Vec2D( 6.928081 , 2.733422 ),
    Vec2D( 6.905407 , 2.622311 ),
    Vec2D( 6.860060 , 2.677867 ),
    Vec2D( 6.814712 , 2.677867 ),
    Vec2D( 6.678671 , 2.677867 ),
    Vec2D( 6.678671 , 2.733422 ),
    Vec2D( 6.769365 , 2.733422 ),
    Vec2D( 6.814712 , 2.733422 ),
    Vec2D( 6.792039 , 2.788978 ),
    Vec2D( 6.293219 , 3.066756 ),
    Vec2D( 6.225198 , 3.122311 ),
    Vec2D( 6.202525 , 3.233422 ),
    Vec2D( 6.134504 , 3.344533 ),
    Vec2D( 5.907767 , 3.261200 ),
    Vec2D( 5.862420 , 3.288978 ),
    Vec2D( 6.043809 , 3.427867 ),
    Vec2D( 6.021136 , 3.483422 ),
    Vec2D( 5.975788 , 3.483422 ),
    Vec2D( 5.930441 , 3.511200 ),
    Vec2D( 5.953115 , 3.566756 ),
    Vec2D( 5.975788 , 3.594533 ),
    Vec2D( 5.749052 , 3.788978 ),
    Vec2D( 5.703705 , 3.788978 ),
    Vec2D( 5.635684 , 3.788978 ),
    Vec2D( 5.703705 , 3.844533 ),
    Vec2D( 5.703705 , 4.011200 ),
    Vec2D( 5.499642 , 4.011200 ),
    Vec2D( 5.862420 , 4.372311 ),
    Vec2D( 5.975788 , 4.427867 ),
    Vec2D( 6.021136 , 4.427867 ),
    Vec2D( 6.089156 , 4.538978 ),
    Vec2D( 6.111830 , 4.566756 ),
    Vec2D( 6.089156 , 4.650089 ),
    Vec2D( 5.998462 , 4.650089 ),
    Vec2D( 5.817073 , 4.788978 ),
    Vec2D( 5.771726 , 4.816756 ),
    Vec2D( 5.681031 , 4.816756 ),
    Vec2D( 5.749052 , 4.927867 ),
    Vec2D( 5.749052 , 5.038978 ),
    Vec2D( 5.839747 , 5.177867 ),
    Vec2D( 5.998462 , 5.233422 ),
    Vec2D( 6.225198 , 5.233422 ),
    Vec2D( 6.270545 , 5.233422 ),
    Vec2D( 6.383914 , 5.288978 ),
    Vec2D( 6.406587 , 5.372311 ),
    Vec2D( 6.429261 , 5.400089 ),
    Vec2D( 6.587976 , 5.483422 ),
    Vec2D( 6.670626 , 5.490000 ),
    Vec2D( 6.700845 , 5.564100 ),
    Vec2D( 6.860060 , 5.927867 ),
    Vec2D( 6.860060 , 6.038978 ),
    Vec2D( 6.950754 , 6.205644 ),
    Vec2D( 6.973428 , 6.316756 ),
    Vec2D( 7.041449 , 6.344533 ),
    Vec2D( 7.064122 , 6.455644 ),
    Vec2D( 7.116072 , 6.541989 ),
    Vec2D( 7.114313 , 6.603667 ),
    Vec2D( 7.025305 , 6.741422 ),
    Vec2D( 6.736924 , 6.701367 ),
    Vec2D( 6.641658 , 6.741467 ),
    Vec2D( 6.500574 , 6.761389 ),
    Vec2D( 6.435410 , 6.733422 ),
    Vec2D( 6.224291 , 6.728556 ),
    Vec2D( 6.191759 , 6.738989 ),
    Vec2D( 6.099124 , 6.755000 ),
    Vec2D( 6.041805 , 6.749733 ),
    Vec2D( 6.001672 , 6.742967 ),
    Vec2D( 5.905382 , 6.718300 ),
    Vec2D( 5.817073 , 6.677867 ),
    Vec2D( 5.611713 , 6.686622 ),
    Vec2D( 5.401366 , 6.864333 ),
    Vec2D( 5.386274 , 6.927867 ),
    Vec2D( 5.356608 , 6.981811 ),
    Vec2D( 5.404095 , 7.111822 ),
    Vec2D( 5.561958 , 7.216133 ),
    Vec2D( 5.660643 , 7.244722 ),
    Vec2D( 5.366149 , 7.489478 ),
    Vec2D( 5.340927 , 7.511200 ),
    Vec2D( 5.114998 , 7.592867 ),
    Vec2D( 4.870667 , 7.692033 ),
    Vec2D( 4.746560 , 7.781856 ),
    Vec2D( 4.708060 , 7.760867 ),
    Vec2D( 4.692225 , 7.802500 ),
    Vec2D( 4.607090 , 7.849044 ),
    Vec2D( 4.481324 , 7.879711 ),
    Vec2D( 4.340031 , 8.093378 ),
    Vec2D( 4.181171 , 8.158044 ),
    Vec2D( 4.116415 , 8.200800 ),
    Vec2D( 4.081135 , 8.195278 ),
    Vec2D( 4.090912 , 8.272500 ),
    Vec2D( 4.032232 , 8.378311 ),
    Vec2D( 3.779566 , 8.791278 ),
    Vec2D( 3.769654 , 8.849022 ),
    Vec2D( 3.598177 , 8.955178 ),
    Vec2D( 3.576828 , 9.059633 ),
    Vec2D( 3.527037 , 9.066756 ),
    Vec2D( 3.498069 , 9.082022 ),
    Vec2D( 3.541865 , 9.174211 ),
    Vec2D( 3.542409 , 9.234411 ),
    Vec2D( 3.576275 , 9.262711 ),
    Vec2D( 3.582279 , 9.287744 ),
    Vec2D( 3.390995 , 9.316756 ),
    Vec2D( 3.209606 , 9.344533 ),
    Vec2D( 3.100836 , 9.367511 ),
    Vec2D( 2.957466 , 9.370756 ),
    Vec2D( 2.870844 , 9.366222 ),
    Vec2D( 2.777211 , 9.285222 ),
    Vec2D( 2.744851 , 9.285900 ),
    Vec2D( 2.775397 , 9.294867 ),
    Vec2D( 2.832661 , 9.341156 ),
    Vec2D( 2.868114 , 9.373300 ),
    Vec2D( 2.869502 , 9.400089 ),
    Vec2D( 2.794434 , 9.420178 ),
    Vec2D( 2.714423 , 9.440078 ),
    Vec2D( 2.641124 , 9.441944 ),
    Vec2D( 2.572096 , 9.428378 ),
    Vec2D( 2.548379 , 9.418600 ),
    Vec2D( 2.573130 , 9.388211 ),
    Vec2D( 2.563126 , 9.333567 ),
    Vec2D( 2.535855 , 9.320067 ),
    Vec2D( 2.517670 , 9.282778 ),
    Vec2D( 2.479488 , 9.260278 ),
    Vec2D( 2.483125 , 9.239067 ),
    Vec2D( 2.464034 , 9.224278 ),
    Vec2D( 2.468586 , 9.180556 ),
    Vec2D( 2.443129 , 9.168989 ),
    Vec2D( 2.439084 , 9.147456 ),
    Vec2D( 2.448389 , 9.129344 ),
    Vec2D( 2.444897 , 9.109600 ),
    Vec2D( 2.450720 , 9.097256 ),
    Vec2D( 2.444897 , 9.080389 ),
    Vec2D( 2.447808 , 9.045822 ),
    Vec2D( 2.424536 , 9.024011 ),
    Vec2D( 2.415811 , 9.000133 ),
    Vec2D( 2.442457 , 8.957422 ),
    Vec2D( 2.429887 , 8.946567 ),
    Vec2D( 2.455028 , 8.894556 ),
    Vec2D( 2.435936 , 8.879078 ),
    Vec2D( 2.413136 , 8.853411 ),
    Vec2D( 2.410805 , 8.836944 ),
    Vec2D( 2.412202 , 8.822133 ),
    Vec2D( 2.387533 , 8.789544 ),
    Vec2D( 2.386608 , 8.776044 ),
    Vec2D( 2.398706 , 8.757278 ),
    Vec2D( 2.373103 , 8.739511 ),
    Vec2D( 2.387070 , 8.769467 ),
    Vec2D( 2.375434 , 8.784611 ),
    Vec2D( 2.358674 , 8.785922 ),
    Vec2D( 2.337270 , 8.793167 ),
    Vec2D( 2.365195 , 8.790533 ),
    Vec2D( 2.399169 , 8.821478 ),
    Vec2D( 2.396376 , 8.837933 ),
    Vec2D( 2.408946 , 8.879078 ),
    Vec2D( 2.432218 , 8.894878 ),
    Vec2D( 2.414995 , 8.963022 ),
    Vec2D( 2.390961 , 8.983722 ),
    Vec2D( 2.340091 , 8.969389 ),
    Vec2D( 2.332091 , 8.946244 ),
    Vec2D( 2.340091 , 8.927722 ),
    Vec2D( 2.332091 , 8.912289 ),
    Vec2D( 2.316093 , 8.904067 ),
    Vec2D( 2.311730 , 8.874744 ),
    Vec2D( 2.288975 , 8.861244 ),
    Vec2D( 2.247727 , 8.856233 ),
    Vec2D( 2.233180 , 8.861889 ),
    Vec2D( 2.209436 , 8.859233 ),
    Vec2D( 2.231003 , 8.871144 ),
    Vec2D( 2.265911 , 8.873200 ),
    Vec2D( 2.277548 , 8.869600 ),
    Vec2D( 2.290635 , 8.873711 ),
    Vec2D( 2.299360 , 8.904578 ),
    Vec2D( 2.268088 , 8.909622 ),
    Vec2D( 2.247727 , 8.925256 ),
    Vec2D( 2.225734 , 8.920756 ),
    Vec2D( 2.208747 , 8.909622 ),
    Vec2D( 2.203768 , 8.921811 ),
    Vec2D( 2.214352 , 8.931822 ),
    Vec2D( 2.197138 , 8.933811 ),
    Vec2D( 2.148725 , 8.907478 ),
    Vec2D( 2.134577 , 8.904844 ),
    Vec2D( 2.113354 , 8.917222 ),
    Vec2D( 2.095107 , 8.918800 ),
    Vec2D( 2.079961 , 8.912944 ),
    Vec2D( 2.060761 , 8.913356 ),
    Vec2D( 2.034577 , 8.902656 ),
    Vec2D( 1.983589 , 8.895400 ),
    Vec2D( 2.033997 , 8.913356 ),
    Vec2D( 2.062502 , 8.918700 ),
    Vec2D( 2.092758 , 8.929811 ),
    Vec2D( 2.148090 , 8.928756 ),
    Vec2D( 2.168397 , 8.937878 ),
    Vec2D( 2.146421 , 8.965533 ),
    Vec2D( 2.182173 , 8.943933 ),
    Vec2D( 2.201537 , 8.951311 ),
    Vec2D( 2.239138 , 8.938400 ),
    Vec2D( 2.267063 , 8.944989 ),
    Vec2D( 2.284939 , 8.925767 ),
    Vec2D( 2.306887 , 8.926022 ),
    Vec2D( 2.311086 , 8.936356 ),
    Vec2D( 2.296312 , 8.952489 ),
    Vec2D( 2.317254 , 8.981122 ),
    Vec2D( 2.334939 , 9.003844 ),
    Vec2D( 2.374500 , 9.014044 ),
    Vec2D( 2.386136 , 9.034778 ),
    Vec2D( 2.401962 , 9.044656 ),
    Vec2D( 2.418723 , 9.044889 ),
    Vec2D( 2.426287 , 9.054878 ),
    Vec2D( 2.411739 , 9.063522 ),
    Vec2D( 2.426867 , 9.099311 ),
    Vec2D( 2.398362 , 9.125233 ),
    Vec2D( 2.373339 , 9.121944 ),
    Vec2D( 2.403595 , 9.134289 ),
    Vec2D( 2.417680 , 9.165778 ),
    Vec2D( 2.425860 , 9.192778 ),
    Vec2D( 2.423783 , 9.231400 ),
    Vec2D( 2.400330 , 9.237022 ),
    Vec2D( 2.419494 , 9.243567 ),
    Vec2D( 2.429815 , 9.246711 ),
    Vec2D( 2.449495 , 9.245489 ),
    Vec2D( 2.457676 , 9.289856 ),
    Vec2D( 2.481311 , 9.298211 ),
    Vec2D( 2.488585 , 9.334211 ),
    Vec2D( 2.520255 , 9.353822 ),
    Vec2D( 2.520400 , 9.369944 ),
    Vec2D( 2.494960 , 9.432511 ),
    Vec2D( 2.463671 , 9.469200 ),
    Vec2D( 2.406950 , 9.500578 ),
    Vec2D( 2.240907 , 9.536433 ),
    Vec2D( 2.129969 , 9.569467 ),
    Vec2D( 2.031530 , 9.607422 ),
    Vec2D( 1.932328 , 9.658044 ),
    Vec2D( 1.835167 , 9.695656 ),
    Vec2D( 1.746196 , 9.760744 ),
    Vec2D( 1.667446 , 9.789667 ),
    Vec2D( 1.575400 , 9.797622 ),
    Vec2D( 1.562104 , 9.828722 ),
    Vec2D( 1.531422 , 9.846800 ),
    Vec2D( 1.415859 , 9.888744 ),
    Vec2D( 1.315206 , 9.942167 ),
    Vec2D( 1.175573 , 10.083667 ),
    Vec2D( 1.147394 , 10.090267 ),
    Vec2D( 1.118064 , 10.086567 ),
    Vec2D( 0.990883 , 9.998400 ),
    Vec2D( 0.778930 , 9.990856 ),
    Vec2D( 0.592924 , 10.033144 ),
    Vec2D( 0.507490 , 10.125422 ),
    Vec2D( 0.419562 , 10.320811 ),
    Vec2D( 0.375403 , 10.344533 ),
    Vec2D( 0.276464 , 10.431189 ),
    Vec2D( 0.220170 , 10.534911 ),
    Vec2D( 0.181271 , 10.571000 ),
    Vec2D( 0.153745 , 10.620156 ),
    Vec2D( 0.114973 , 10.653889 ),
    Vec2D( 0.103274 , 10.707756 ),
    Vec2D( 0.097914 , 10.761511 ),
    Vec2D( 0.076256 , 10.811522 ),
    Vec2D( 0.061935 , 10.867833 ),
    Vec2D( 0.000000 , 10.960167 )
    ])

    distances = (0, .05, .1, .25) # threshold sizes in kilometres
    import csv
    for d in distances:
        simple = coast.simplify(d) if d > 0 else coast
        with open('poly-{0}.csv'.format(d), 'w') as output_doc:
            writer = csv.writer(output_doc, dialect='excel')
            for pt in simple.points:
                writer.writerow(pt.coords)
4 голосов
/ 04 апреля 2010

Когда я смотрел на то, как превратить кривую Безье в отрезки прямых линий, в итоге я определил максимальное расстояние между кривой и прямой линией между двумя точками кривой. Начните с одной точки, являющейся одной конечной точкой, двигайте другой конец вдоль кривой, пока скольжение еще не превысит максимальное расстояние. Затем сделайте это снова, используя вторую (и так далее) точку, пока не пройдете всю кривую.

Вы должны иметь возможность создавать несколько LOD, просто увеличивая допустимое расстояние между отрезками линии и вашей полилинией.

2 голосов
/ 12 апреля 2010

Я фанат сортировки точек на основе угла, который сегменты образуют по обе стороны от точки, а затем итеративного удаления точек с наименьшим углом, пока вы не достигнете некоторого порога. O (n log (n)), я думаю, по сравнению с O (n ^ 2) метода RDP и с меньшими константами для загрузки. :)

Угол можно даже масштабировать по длине сегмента (на самом деле его проще вычислить таким образом), если вы хотите придать больший вес (желательность) более длинным сегментам.

Учитывая, что вес p0, p1, p2, p1 будет ((p0 - p1) точка (p2 - p1)), нормализуйте различия, если вы не хотите взвешивать по длине. (Сравните это с расстоянием до линии, это намного дешевле, и результаты могут быть идентичны.)

2 голосов
/ 04 апреля 2010

Я разработал очень простой алгоритм, использующий расстояние заданной точки до следующих точек, чтобы решить, имеет ли смысл включать их в рендеринг. В зависимости от текущего масштаба вы можете связать минимальное расстояние между точками, требуемое для преобразованной модели.

1 голос
/ 01 мая 2017

Добавление к множеству ответов. Я нашел реализацию javascript в этом репозитории github: https://github.com/mourner/simplify-js

Существует также список различных реализаций алгоритма Рамера-Дугласа-Пекера на разных языках.

1 голос
/ 15 декабря 2015
0 голосов
/ 22 мая 2017

Что касается ответа Кулеброна , является ли рекурсивный вызов правильным? Из того, что я понимаю, RDP разбивает строку на две разные строки: начало до максимума и максимальное до конца.

Но, глядя на вызов, где pos - это индекс max dist в списке ...

return (ramerdouglas(line[:pos + 2], dist) + 
        ramerdouglas(line[pos + 1:], dist)[1:])

вместо этого делает начало до max + 1, max + 1 до конца. Разве это не должно быть ...

return (ramerdouglas(line[:pos + 1], dist) + 
        ramerdouglas(line[pos:], dist)[1:])
...