Я читал на персептронах и пытался внедрить их в haskell.Кажется, алгоритм работает, насколько я могу проверить.Я собираюсь полностью переписать код в какой-то момент, но перед этим я подумал задать несколько вопросов, которые возникли при кодировании этого.
Нейрон можно обучить при возврате полного нейрона.let neuron = train set [1,1]
работает, но если я изменю функцию поезда, чтобы она возвращала неполный нейрон без входов, или попытаюсь сопоставить с образцом и создать только неполный нейрон, код попадет в бесконечный цикл.
tl; dr при возврате полного нейрона все работает, но при возврате каррируемого нейрона код попадает в цикл.
module Main where
import System.Random
type Inputs = [Float]
type Weights = [Float]
type Threshold = Float
type Output = Float
type Trainingset = [(Inputs, Output)]
data Neuron = Neuron Threshold Weights Inputs deriving Show
output :: Neuron -> Output
output (Neuron threshold weights inputs) =
if total >= threshold then 1 else 0
where total = sum $ zipWith (*) weights inputs
rate :: Float -> Float -> Float
rate t o = 0.1 * (t - o)
newweight :: Float -> Float -> Weights -> Inputs -> Weights
newweight t o weight input = zipWith nw weight input
where nw w x = w + (rate t o) * x
learn :: Neuron -> Float -> Neuron
learn on@(Neuron tr w i) t =
let o = output on
in Neuron tr (newweight t o w i) i
converged :: (Inputs -> Neuron) -> Trainingset -> Bool
converged n set = not $ any (\(i,o) -> output (n i) /= o) set
train :: Weights -> Trainingset -> Neuron
train w s = train' s (Neuron 1 w)
train' :: Trainingset -> (Inputs -> Neuron) -> Neuron
train' s n | not $ converged n set
= let (Neuron t w i) = train'' s n
in train' s (Neuron t w)
| otherwise = n $ fst $ head s
train'' :: Trainingset -> (Inputs -> Neuron) -> Neuron
train'' ((a,b):[]) n = learn (n a) b
train'' ((a,b):xs) n = let
(Neuron t w i) = learn (n a) b
in
train'' xs (Neuron t w)
set :: Trainingset
set = [
([1,0], 0),
([1,1], 1),
([0,1], 0),
([0,0], 0)
]
randomWeights :: Int -> IO [Float]
randomWeights n =
do
g <- newStdGen
return $ take n $ randomRs (-1, 1) g
main = do
w <- randomWeights 2
let (Neuron t w i) = train w set
print $ output $ (Neuron t w [1,1])
return ()
Редактировать: Согласно комментариям, указав немного больше.
Работая с кодом выше, я получаю: perceptron: <<loop>>
Но, отредактировав основной метод так:
main = do
w <- randomWeights 2
let neuron = train w set
print $ neuron
return ()
(обратите внимание на let neuron
и напечатайте строки) все работает и вывод:
Neuron 1.0 [0.71345896,0.33792675] [1.0,0.0]