Стабилизация изображения - PullRequest
2 голосов
/ 22 ноября 2010

Эй, Я делаю проект для стабилизации видео последовательности с использованием метода оптического потока. Я хорошо справился с оптическим потоком. Но у меня есть 2 ветви передо мной, чтобы работать над этим .. 1 - после получения оптического потока я нашел среднее смещение изображения, а затем вычел среднее из особенностей второго кадра, мой вопрос: что делать дальше?

2- Или я мог бы использовать функцию openCV для стабилизации изображения, для которого я вычислил матрицу преобразования, а затем использовал cvPerspectiveTransform, а затем cvWarpPerspective, но я получаю сообщение об ошибке "bad flag"

Вы можете увидеть код, что я хочу, чтобы сделать, чтобы стабилизировать изображение? Я хочу любое решение, которое вы можете предоставить?

enter code here
#include <stdio.h>
#include <stdlib.h>    
//#include "/usr/include/opencv/cv.h"    
#include <cv.h>    
#include <cvaux.h>    
#include <highgui.h>    
#include <math.h>    
#include <iostream>

#define PI 3.1415926535898

double rads(double degs)
{
    return (PI/180 * degs);
}

CvCapture *cap;

IplImage *img;    
IplImage *frame;     
IplImage *frame1;    
IplImage *frame3;    
IplImage *frame2;    
IplImage *temp_image1;    
IplImage *temp_image2;    
IplImage *frame1_1C;     
IplImage *frame2_1C;     
IplImage *eig_image;     
IplImage *temp_image;     
IplImage *pyramid1 = NULL;    
IplImage *pyramid2 = NULL;

char * mapx;
char * mapy;

int h;
int corner_count;
CvMat* M = cvCreateMat(3,3,CV_32FC1);
CvPoint p,q,l,s;
double hypotenuse;
double angle;

int line_thickness = 1, line_valid = 1, pos = 0;
CvScalar line_color;
CvScalar target_color[4] = { // in BGR order
        {{   0,   0, 255,   0 }},  // red    
        {{   0, 255,   0,   0 }},  // green    
        {{ 255,   0,   0,   0 }}, // blue    
        {{   0, 255, 255,   0 }}   // yellow    
};

inline static double square(int a)    
{
return a * a;  
}

char* IntToChar(int num){return NULL;}

/*{
    char* retstr = static_cast<char*>(calloc(12, sizeof(char)));

    if (sprintf(retstr, "%i", num) > 0)
    {
        return retstr;
    }
    else
    {
        return NULL;
    }
}*/

inline static void allocateOnDemand( IplImage **img, CvSize size, int depth, int channels )
{
    if ( *img != NULL ) 
         return;

    *img = cvCreateImage( size, depth, channels );

    if ( *img == NULL )
    {
        fprintf(stderr, "Error: Couldn't allocate image.  Out of memory?\n");
        exit(-1);
    }
}

void clearImage (IplImage *img)
{ 
    for (int i=0; i<img->imageSize; i++)    
        img->imageData[i] = (char) 0;    
}

int main()
{
    cap = cvCaptureFromCAM(0);    
    //cap = cvCaptureFromAVI("/home/saif/Desktop/NAO.. the project/jj/Test3.avi");

    CvSize frame_size;

    // Reading the video's frame size
    frame_size.height = (int) cvGetCaptureProperty( cap, CV_CAP_PROP_FRAME_HEIGHT );
    frame_size.width  = (int) cvGetCaptureProperty( cap, CV_CAP_PROP_FRAME_WIDTH );    
    cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE);

    while(true)    
    {
    frame = cvQueryFrame( cap );

        if (frame == NULL)
        {    
            fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
            return -1;    
        }

        // Allocating another image if it is not allocated already.     
        allocateOnDemand( &frame1_1C, frame_size, IPL_DEPTH_8U, 1 );    
        cvConvertImage(frame, frame1_1C, 0);    
        allocateOnDemand( &frame1, frame_size, IPL_DEPTH_8U, 3 );    
        cvConvertImage(frame, frame1, 0);

        //Get the second frame of video.    
        frame = cvQueryFrame( cap );

        if (frame == NULL)    
        {
            fprintf(stderr, "Error: Hmm. The end came sooner than we thought.\n");
            return -1;
        }

        if(!frame) 
        {    
            printf("bad video \n");    
            exit(0);
        }

        allocateOnDemand( &frame2_1C, frame_size, IPL_DEPTH_8U, 1 );   
        cvConvertImage(frame, frame2_1C, 0);    
        allocateOnDemand( &frame2, frame_size, IPL_DEPTH_8U, 3 );    
        cvConvertImage(frame, frame2, 0);

        CvSize optical_flow_window = cvSize(5,5);    
        eig_image = cvCreateImage( frame_size, IPL_DEPTH_32F, 1 );    
        temp_image = cvCreateImage( frame_size, IPL_DEPTH_32F, 1 );

        CvTermCriteria optical_flow_termination_criteria = cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 );

        // Feature tracking 
        CvPoint2D32f frame1_features[4];
        CvPoint2D32f frame2_features[4];

        //cvCornerEigenValsAndVecs(eig_image, temp_image, 1 );    
        corner_count = 4;

        cvGoodFeaturesToTrack(frame1_1C,eig_image , temp_image, frame1_features, &corner_count, 0.1, .01, NULL, 5, 1);    
        cvFindCornerSubPix( frame1_1C, frame1_features, corner_count,cvSize(5, 5) ,optical_flow_window , optical_flow_termination_criteria);

        if ( corner_count <= 0 )    
            printf( "\nNo features detected.\n" );    
        else    
            printf( "\nNumber of features found = %d\n", corner_count );

        //Locus Kande method.     
        char optical_flow_found_feature[20];    
        float optical_flow_feature_error[20];

        allocateOnDemand( &pyramid1, frame_size, IPL_DEPTH_8U, 1 );    
        allocateOnDemand( &pyramid2, frame_size, IPL_DEPTH_8U, 1 );

        cvCalcOpticalFlowPyrLK(frame1_1C, frame2_1C, pyramid1, pyramid2, frame1_features, frame2_features, corner_count, optical_flow_window, 5, optical_flow_found_feature, NULL, optical_flow_termination_criteria, NULL);

    /*
    double sumOfDistancesX = 0;    
    double sumOfDistancesY = 0;

    int debug = 0;

     CvFont font1, font2;    
     CvScalar red, green, blue;    
     IplImage* seg_in = NULL;    
     IplImage *seg_out = NULL;

     allocateOnDemand( &seg_in,  frame_size, IPL_DEPTH_8U, 3 );    
     allocateOnDemand( &seg_out, frame_size, IPL_DEPTH_8U, 3 );

     clearImage(seg_in);    
     clearImage(seg_in);    

     for( int i=0; i <corner_count; i++ )
     {

         if ( optical_flow_found_feature[i] == 0 )  
             continue;    
         p.x = (int) frame1_features[i].x;    
         p.y = (int) frame1_features[i].y;    
         q.x = (int) frame2_features[i].x;    
         q.y = (int) frame2_features[i].y;
         angle = atan2( (double) p.y - q.y, (double) p.x - q.x );

          sumOfDistancesX += q.x - p.x;     
          sumOfDistancesY += q.y - p.y;

          //cvRemap(frame2,frame1,averageDistanceX , averageDistanceY,CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS, cvScalarAll(0));    
      }
      */

      /*    
      int averageDistanceX = sumOfDistancesX / corner_count;    
      int averageDistanceY = sumOfDistancesY / corner_count;    
      l.x = averageDistanceX - q.x;    
      s.y = averageDistanceY - q.y;
      */

#define cvWarpPerspectiveQMatrix cvGetPerspectiveTransform

       //CvMat* N = cvCreateMat(3,3,CV_32FC1);

       cvGetPerspectiveTransform(frame2_features, frame1_features, M);
       cvPerspectiveTransform(frame1_features, frame2_features, M);    
       cvWarpPerspective( frame2_features, frame1_features, M,CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,cvScalarAll(0) );

        cvShowImage("Optical Flow", frame1);    
        cvWaitKey(50);
    }

    cvReleaseCapture(&cap);    
    cvReleaseMat(&M);    

    return 0;    
}

1 Ответ

3 голосов
/ 23 ноября 2010

Вы не хотите вычитать среднее смещение из второго изображения, вы хотите преобразовать (переместить) второе изображение по среднему смещению, чтобы оно «соответствовало» первому. Используемое вами «смещение» зависит от вашей ситуации.

  • Если ваша камера дрожит, но стоит на месте, в противном случае вы хотите использовать среднее смещение между двумя последовательными кадрами в качестве вектора преобразования для второго кадра. С каждым новым кадром вы вычисляете смещение между преобразованным первым кадром и новым кадром и трансформируете новый кадр.
  • Если ваша камера перемещается и дрожит (то есть камера, установленная на шлеме на горном велосипеде), вы хотите сначала найти среднее смещение между кадрами за несколько кадров, а затем преобразовать отдельные кадры в последовательность на основе разницы между этим средним смещением и смещение между ним и предыдущим кадром.

EDIT Что в основном вам нужно сделать для варианта 2, так это рассчитать среднее значение среднего перемещения между кадрами за последние несколько кадров. Это можно сделать разными способами, но я бы предложил использовать что-то вроде фильтра Калмана. Затем для нового кадра вы рассчитываете движение между этим и (исправленным) предыдущим кадром. Из полученного вами движения вычитаете среднее движение до этой точки и перемещаете новый кадр на эту разницу.

...