Прежде всего, mod
медленный, поэтому используйте rem
в ситуациях, когда это не имеет значения (когда вы не имеете дело с негативами, в основном).Во-вторых, используйте Критерий , чтобы показать (себе), что быстрее и какие изменения на самом деле являются оптимизацией.Я знаю, что я не даю вам полного ответа на этот вопрос, но это хорошее место для вас (и других потенциальных ответчиков), чтобы начать, так что вот некоторый код:
import List
import Criterion.Main
main = do
str <- getLine
let run f = length . f
input = read str :: Integer
defaultMain [ bench "primes" (nf (run primes) input)
, bench "primes'" (nf (run primes') input)
, bench "primes''" (nf (run primes'') input)
, bench "primesTMD" (nf (run primesTMD) input)
, bench "primes'TMD" (nf (run primes'TMD) input)
, bench "primes''TMD" (nf (run primes''TMD) input)
]
putStrLn . show . length . primes'' $ (read str :: Integer)
-- primeira implementação
primes n
| n < 2 = []
| n == 2 = [2]
| n `mod` 2 == 0 = primes'
| otherwise = if (find (\x -> n `mod` x == 0) primes') == Nothing then
n:primes'
else
primes'
where primes' = primes (n - 1)
primesTMD n
| n < 2 = []
| n == 2 = [2]
| n `mod` 2 == 0 = primes'
| otherwise = if (find (\x -> n `rem` x == 0) primes') == Nothing then
n:primes'
else
primes'
where primes' = primesTMD (n - 1)
-- segunda implementação
primes' :: Integer -> [Integer]
primes' n = sieve $ 2 : [3,5..n]
where sieve :: [Integer] -> [Integer]
sieve [] = []
sieve l@(x:xs)
| x*x >= n = l
| otherwise = x : sieve list'
where list' = filter (\y -> y `mod` x /= 0) xs
primes'TMD :: Integer -> [Integer]
primes'TMD n = sieve $ 2 : [3,5..n]
where sieve :: [Integer] -> [Integer]
sieve [] = []
sieve l@(x:xs)
| x*x >= n = l
| otherwise = x : sieve list'
where list' = filter (\y -> y `rem` x /= 0) xs
-- terceira implementação
primes'' :: Integer -> [Integer]
primes'' n = 2 : sieve 3 [3,5..n]
where sieve :: Integer -> [Integer] -> [Integer]
sieve _ [] = []
sieve m l@(x:xs)
| m*m >= n = l
| x < m*m = x : sieve m xs
| otherwise = sieve (m + 2) list'
where list'= filter (\y -> y `mod` m /= 0) l
primes''TMD :: Integer -> [Integer]
primes''TMD n = 2 : sieve 3 [3,5..n]
where sieve :: Integer -> [Integer] -> [Integer]
sieve _ [] = []
sieve m l@(x:xs)
| m*m >= n = l
| x < m*m = x : sieve m xs
| otherwise = sieve (m + 2) list'
where list'= filter (\y -> y `rem` m /= 0) l
Обратите внимание на улучшенное время выполнениявариантов, использующих rem
:
$ ghc --make -O2 sieve.hs
$./sieve
5000
...
benchmarking primes
mean: 23.88546 ms, lb 23.84035 ms, ub 23.95000 ms
benchmarking primes'
mean: 775.9981 us, lb 775.4639 us, ub 776.7081 us
benchmarking primes''
mean: 837.7901 us, lb 836.7824 us, ub 839.0260 us
benchmarking primesTMD
mean: 16.15421 ms, lb 16.11955 ms, ub 16.19202 ms
benchmarking primes'TMD
mean: 568.9857 us, lb 568.5819 us, ub 569.4641 us
benchmarking primes''TMD
mean: 642.5665 us, lb 642.0495 us, ub 643.4105 us
Хотя я вижу, что вы делаете это для своего собственного образования, стоит отметить соответствующие ссылки простых чисел на Haskell.org и быстрый Пакет простых чисел при взломе.