Как это?
from math import sin, cos, pi, radians, ceil
import itertools
try:
rng = xrange # Python 2.x
except NameError:
rng = range # Python 3.x
# for the following calculations,
# - all angles are in radians (unless otherwise specified)
# - latitude is in [-pi/2..pi/2]
# - longitude is in [-pi..pi)
MIN_LAT = -pi/2 # South Pole
MAX_LAT = pi/2 # North Pole
MIN_LON = -pi # Far West
MAX_LON = pi # Far East
def floatRange(start, end=None, step=1.0):
"Floating-point range generator"
start += 0.0 # cast to float
if end is None:
end = start
start = 0.0
steps = int(ceil((end-start)/step))
return (start + k*step for k in rng(0, steps+1))
def patch2d(xmin, xmax, ymin, ymax, step=1.0):
"2d rectangular grid generator"
if xmin>xmax:
xmin,xmax = xmax,xmin
xrange = floatRange(xmin, xmax, step)
if ymin>ymax:
ymin,ymax = ymax,ymin
yrange = floatRange(ymin, ymax, step)
return itertools.product(xrange, yrange)
def patch2d_to_3d(xyIter, zFn):
"Convert 2d field to 2.5d height-field"
mapFn = lambda a: (a[0], a[1], zFn(a[0],a[1]))
return itertools.imap(mapFn, xyIter)
#
# Representation conversion functions
#
def to_spherical(lon, lat, rad):
"Map from spherical to spherical coordinates (identity function)"
return lon, lat, rad
def to_cylindrical(lon, lat, rad):
"Map from spherical to cylindrical coordinates"
# angle, z, radius
return lon, rad*sin(lat), rad*cos(lat)
def to_cartesian(lon, lat, rad):
"Map from spherical to Cartesian coordinates"
# x, y, z
cos_lat = cos(lat)
return rad*cos_lat*cos(lon), rad*cos_lat*sin(lon), rad*sin(lat)
def bumpySphere(gridSize, radiusFn, outConv):
lonlat = patch2d(MIN_LON, MAX_LON, MIN_LAT, MAX_LAT, gridSize)
return list(outConv(*lonlatrad) for lonlatrad in patch2d_to_3d(lonlat, radiusFn))
# make a plain sphere of radius 10
sphere = bumpySphere(radians(5.0), lambda x,y: 10.0, to_cartesian)
# spiky-star-function maker
def starFnMaker(xWidth, xOffset, yWidth, yOffset, minRad, maxRad):
# make a spiky-star function:
# longitudinal and latitudinal triangular waveforms,
# joined as boolean intersection,
# resulting in a grid of positive square pyramids
def starFn(x, y, xWidth=xWidth, xOffset=xOffset, yWidth=yWidth, yOffset=yOffset, minRad=minRad, maxRad=maxRad):
xo = ((x-xOffset)/float(xWidth)) % 1.0 # xo in [0.0..1.0), progress across a single pattern-repetition
xh = 2 * min(xo, 1.0-xo) # height at xo in [0.0..1.0]
xHeight = minRad + xh*(maxRad-minRad)
yo = ((y-yOffset)/float(yWidth)) % 1.0
yh = 2 * min(yo, 1.0-yo)
yHeight = minRad + yh*(maxRad-minRad)
return min(xHeight, yHeight)
return starFn
# parameters to spike-star-function maker
width = 2*pi
horDivs = 20 # number of waveforms longitudinally
horShift = 0.0 # longitudinal offset in [0.0..1.0) of a wave
height = pi
verDivs = 10
verShift = 0.5 # leave spikes at the poles
minRad = 10.0
maxRad = 15.0
deathstarFn = starFnMaker(width/horDivs, width*horShift/horDivs, height/verDivs, height*verShift/verDivs, minRad, maxRad)
deathstar = bumpySphere(radians(2.0), deathstarFn, to_cartesian)