У меня проблема с размещением PID-контроллера в моем файле simulink.
В моем файле simulink я использовал pid-контроллер для управления моим процессом.В качестве блок-схемы процесса я использовал s-функцию.
В соответствии с методом Циглера-Николса, для первого шага мы устанавливаем k равным наименьшему значению (0.5), поэтому я помещаю 0.5 в свое пропорциональное значение.но нет никакой разницы между результатом с контроллером и без контроллера. Даже увеличивая или уменьшая пропорциональное значение.
Почему возникает эта проблема?Надеюсь, что кто-то может мне помочь. Спасибо.
моя блок-схема выглядит как на картинке ниже. Ссылка на эту картинку
http://s1009.photobucket.com/albums/af218/syarinazulkifeli/?action=view¤t=Untitled-1.png
Вот мой файл s-функции:
function [sys,x0,str,ts]= reactor_sfcn(t,x,u,flag)
switch flag
case 0
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys = mdlDerivatives(t,x,u);
case 3,
sys = mdlOutputs(t,x,u);
case 9
sys =[];
end
function [sys,x0,str,ts] = mdlInitializeSizes()
s = simsizes;
s.NumContStates = 11;
s.NumDiscStates = 0;
s.NumOutputs = 11;
s.NumInputs = 1;
s.DirFeedthrough = 0;
s.NumSampleTimes = 1;
sys = simsizes(s) ;
x0 = [0.0258,0,0,0,0,0,0,0,8.83,303.15,303.15];
str=[] ;
ts = [0 0];
function sys = mdlDerivatives (t,x,u)
Tjo = u;
sys = reactor(t,x,Tjo);
function sys = mdlOutputs(t,x,u)
% sys(1)=x(1);
% sys(2)=x(2);
% sys(3)=x(3);
% sys(4)=x(4);
% sys(5)=x(5);
% sys(6)=x(6);
% sys(7)=x(7);
% sys(8)=x(8);
% sys(9)=x(9);
% sys(10)=x(10);
% sys(11)=x(11);
sys = x;
Ссылка на файл s-функции
function DXDT = reactor(t,x,Tjo)
% -------------------------------------------- %
% Parameters definition
% -------------------------------------------- %
I = x(1); X = x(2); P0 = x(3);
P1 = x(4); P2 = x(5); Q0 = x(6);
Q1 = x(7); Q2 = x(8); M = x(9);
Tjo = x(10); T = x(11);
% ---------------------------------------
% Constants
% =======================================
%constant
M0 = 8.83;
I0 = 0.0258;
Qh = 60.44;
MMWm = 100.3;
U0 = 55.1;
% Densities
dp = 1200;
dm = 968-1.225*(T-273.15);
Rhoc = 998;
% volume expansion factor
Fev = (dm - dp)./dp ;
% volume fraction
Fvm = (1 - X)./(1 + Fev*X);
Fvp = X*(1-Fev)./(1+Fev*X);
% Total reactant mixture density
Rho = dm*Fvm + dp*Fvp;
% Reactor and jacket volume
Vc = 2;
V = 2;
% Reactor dimension
At =3.1416*0.15*0.113;
% coolant flow rate
Mc = 0.41/18;
%
Cpc = 77.22;
Cp = 199.13;
% Average coolant temperature
Tji = 303.15;
Tj =(Tji+Tjo)/2;
% Overall heat transfer coeff
alpha = 0.4;
U = U0-alpha*X;
delHp = 57800;
% ---------------------------------------
% Rates of reaction
% =======================================
% Fujita-Doolittle equation
Tgp = 114 +273.25 ;
A = 0.168-8.21e-6*(T-Tgp)^2;
B = 0.03;
g = exp(2.303*Fvm/(A + B*Fvm));
% Dissociation rate
F = 0.58;
Kd = (6.32e16*exp(-15.43e3/T));
% Propagation rate
Tep = 5.4814e-16*exp(13982/T);
Kp0 = 2.952e7*exp(-4353/(1.987*T));
Kp = (Kp0*g)./(g + (Tep*P0.*Kp0));
% Termination rate
Tet = (1.1353e-22*exp(17420/T))./I0;
Kt0 = 5.88e9*exp(-701/(1.987*T));
Kt = (Kt0*g)./(g + (Tet*P0.*Kt0));
Ktc = 0;
Ktd = Kt ;
% -------------------------------------------- %
% ODE's
% -------------------------------------------- %
dIdt = -Kd*I - ((Fev*I.*P0.*(1 - X)*Kp)./(1 + Fev*X));
dXdt = Kp*(1 - X).*P0;
dP0dt = (-Fev*P0.*P0.*(1 - X)./(1 + Fev*X)).*Kp + 2*F*Kd*I - Kt*P0.*P0;
dP1dt = (-Fev*P0.*P1.*(1 - X)./(1 + Fev*X)).*Kp + 2*F*Kd*I - Kt*P0.*P1 + (Kp*M0*(1 - X)./(1 + Fev*X)).*P0;
dP2dt = (-Fev*P0.*P2.*(1 - X)./(1 + Fev*X)).*Kp + 2*F*Kd*I - Kt*P0.*P2 + (Kp*M0*(1 - X)./(1 + Fev*X)).*(2*P1 + P0);
dQ0dt = (-Fev*P0.*Q0.*(1 - X)./(1 + Fev*X)).*Kp + Ktd*P0.*P0 + 0.5*Ktc*P0.*P0;
dQ1dt = (-Fev*P0.*Q1.*(1 - X)./(1 + Fev*X)).*Kp + Ktd*P0.*P1 + Ktc*P0.*P1;
dQ2dt = (-Fev*P0.*Q2.*(1 - X)./(1 + Fev*X)).*Kp + Ktd*P0.*P2 + Ktc*(P1.*P0 + P1.^2);
dMdt = (-Kp*P0*M0*(1 - X)./(1 + Fev*X)).*((Fev*(1 - X)./(1 + Fev*X)) + 1);
Rm = (-delHp)*dMdt;
dTjodt = (Mc*Cpc*(Tji-Tjo)+ U*At*(T-Tj))/(Vc*Rhoc*Cpc/18);
dTdt = (Qh+(Rm*V*MMWm)-(U*At*(T-Tj)))/(V*Rho*Cp);
DXDT =[dIdt;dXdt;dP0dt;dP1dt;dP2dt;dQ0dt;dQ1dt;dQ2dt;dMdt;dTjodt;dTdt];