Функция R для возврата ВСЕХ факторов - PullRequest
32 голосов
/ 21 июня 2011

Мой обычный поиск foo подводит меня. Я пытаюсь найти функцию R, которая возвращает все факторы целого числа. Существует как минимум 2 пакета с функциями factorize(): gmp и conf.design, однако эти функции возвращают только простые множители. Я хотел бы функцию, которая возвращает все факторы.

Очевидно, что поиск этого затруднен, поскольку R имеет конструкцию, называемую факторами, которая создает много шума в поиске.

Ответы [ 6 ]

19 голосов
/ 21 июня 2011

Чтобы прокомментировать мой комментарий (спасибо @Ramnath за мою опечатку), на моем 64-битном 8-гигабитном компьютере, похоже, работает метод грубой силы:

> FUN(100)
$neg
[1]   -1   -2   -4   -5  -10  -20  -25  -50 -100

$pos
[1]   1   2   4   5  10  20  25  50 100

> FUN(-42)
$neg
[1]  -1  -2  -3  -6  -7 -14 -21 -42

$pos
[1]  1  2  3  6  7 14 21 42

#and big number

> system.time(FUN(1e8))
   user  system elapsed 
   1.95    0.18    2.14 
13 голосов
/ 21 июня 2011

Вы можете получить все факторы из основных факторов. gmp вычисляет их очень быстро.

library(gmp)
library(plyr)

get_all_factors <- function(n)
{
  prime_factor_tables <- lapply(
    setNames(n, n), 
    function(i)
    {
      if(i == 1) return(data.frame(x = 1L, freq = 1L))
      plyr::count(as.integer(gmp::factorize(i)))
    }
  )
  lapply(
    prime_factor_tables, 
    function(pft)
    {
      powers <- plyr::alply(pft, 1, function(row) row$x ^ seq.int(0L, row$freq))
      power_grid <- do.call(expand.grid, powers)
      sort(unique(apply(power_grid, 1, prod)))
    }
  )
}

get_all_factors(c(1, 7, 60, 663, 2520, 75600, 15876000, 174636000, 403409160000))
8 голосов
/ 11 апреля 2016

Обновление

Алгоритм был полностью обновлен и теперь реализует несколько полиномов, а также некоторые умные методы просеивания, которые исключают миллионы проверок. В дополнение к исходным ссылкам, эта статья вместе с этой публикацией из primo были очень полезны для этого последнего этапа (многие благодарны primo). Primo делает большую работу по объяснению кишок QS в относительно коротком промежутке и также написал довольно удивительный алгоритм (он будет учитывать число внизу, 38! + 1, менее чем за 2 секунды !! Безумно !!).

Как и было обещано, ниже приведена моя скромная R-реализация Quadratic Sieve . Я работал над этим алгоритмом время от времени, так как обещал в конце января. Я не буду пытаться объяснить это полностью (если не будет запрошено ... кроме того, ссылки ниже очень хорошо работают), поскольку это очень сложно и, надеюсь, названия моих функций говорят сами за себя. Это оказалось одним из самых сложных алгоритмов, которые я когда-либо пытался выполнить, поскольку он требует как с точки зрения программиста, так и математически. Я прочитал бесчисленные статьи и, в конечном счете, я нашел эти пять наиболее полезными ( QSieve1 , QSieve2 , QSieve3 , QSieve4 , QSieve5 ).

N.B. Этот алгоритм в его нынешнем виде не очень хорошо подходит для общего простого алгоритма факторизации. Если бы он был оптимизирован далее, он должен сопровождаться разделом кода, который выделяет меньшие простые числа (т. Е. Менее 10 ^ 5, как предложено в этом посте ), а затем вызвать QuadSieveAll, чтобы проверить, это простые числа, и если нет, вызовите QuadSieveAll для обоих этих факторов и т. д., пока не останетесь со всеми простыми числами (все эти шаги не так уж сложны). Тем не менее, основной смысл этого поста состоит в том, чтобы выделить сердце квадратичного сита, поэтому приведенные ниже примеры являются полупростыми (даже если он будет учитывать большинство нечетных чисел, не содержащих квадрат ... Кроме того, я не видел пример QS, который не продемонстрировал не полупримес). Я знаю, что ОП искал метод возврата всех факторов, а не первичную факторизацию, но этот алгоритм (если его оптимизировать дальше) в сочетании с одним из вышеприведенных алгоритмов был бы силой, с которой приходится считаться общим алгоритмом факторинга (особенно учитывая, что ОП нуждалось в чем-то для Project Euler , который обычно требует гораздо большего, чем методы грубой силы). Кстати, функция MyIntToBit представляет собой вариант этого ответа, а PrimeSieve от post , который мистер Донтас появился некоторое время назад (слава о том, что хорошо).

QuadSieveMultiPolysAll <- function(MyN, fudge1=0L, fudge2=0L, LenB=0L) {
### 'MyN' is the number to be factored; 'fudge1' is an arbitrary number
### that is used to determine the size of your prime base for sieving;
### 'fudge2' is used to set a threshold for sieving;
### 'LenB' is a the size of the sieving interval. The last three
### arguments are optional (they are determined based off of the
### size of MyN if left blank)

### The first 8 functions are helper functions

    PrimeSieve <- function(n) {
        n <- as.integer(n)
        if (n > 1e9) stop("n too large")
        primes <- rep(TRUE, n)
        primes[1] <- FALSE
        last.prime <- 2L
        fsqr <- floor(sqrt(n))
        while (last.prime <= fsqr) {
            primes[seq.int(last.prime^2, n, last.prime)] <- FALSE
            sel <- which(primes[(last.prime + 1):(fsqr + 1)])
            if (any(sel)) {
                last.prime <- last.prime + min(sel)
            } else {
                last.prime <- fsqr + 1
            }
        }
        MyPs <- which(primes)
        rm(primes)
        gc()
        MyPs
    }

    MyIntToBit <- function(x, dig) {
        i <- 0L
        string <- numeric(dig)
        while (x > 0) {
            string[dig - i] <- x %% 2L
            x <- x %/% 2L
            i <- i + 1L
        }
        string
    }

    ExpBySquaringBig <- function(x, n, p) {
        if (n == 1) {
            MyAns <- mod.bigz(x,p)
        } else if (mod.bigz(n,2)==0) {
            MyAns <- ExpBySquaringBig(mod.bigz(pow.bigz(x,2),p),div.bigz(n,2),p)
        } else {
            MyAns <- mod.bigz(mul.bigz(x,ExpBySquaringBig(mod.bigz(
                pow.bigz(x,2),p), div.bigz(sub.bigz(n,1),2),p)),p)
        }
        MyAns
    }

    TonelliShanks <- function(a,p) {
        P1 <- sub.bigz(p,1); j <- 0L; s <- P1
        while (mod.bigz(s,2)==0L) {s <- s/2; j <- j+1L}
        if (j==1L) {
            MyAns1 <- ExpBySquaringBig(a,(p+1L)/4,p)
            MyAns2 <- mod.bigz(-1 * ExpBySquaringBig(a,(p+1L)/4,p),p)
        } else {
            n <- 2L
            Legendre2 <- ExpBySquaringBig(n,P1/2,p)
            while (Legendre2==1L) {n <- n+1L; Legendre2 <- ExpBySquaringBig(n,P1/2,p)}
            x <- ExpBySquaringBig(a,(s+1L)/2,p)
            b <- ExpBySquaringBig(a,s,p)
            g <- ExpBySquaringBig(n,s,p)
            r <- j; m <- 1L
            Test <- mod.bigz(b,p)
            while (!(Test==1L) && !(m==0L)) {
                m <- 0L
                Test <- mod.bigz(b,p)
                while (!(Test==1L)) {m <- m+1L; Test <- ExpBySquaringBig(b,pow.bigz(2,m),p)}
                if (!m==0) {
                    x <- mod.bigz(x * ExpBySquaringBig(g,pow.bigz(2,r-m-1L),p),p)
                    g <- ExpBySquaringBig(g,pow.bigz(2,r-m),p)
                    b <- mod.bigz(b*g,p); r <- m
                }; Test <- 0L
            }; MyAns1 <- x; MyAns2 <- mod.bigz(p-x,p)
        }
        c(MyAns1, MyAns2)
    }

    SieveLists <- function(facLim, FBase, vecLen, sieveD, MInt) {
        vLen <- ceiling(vecLen/2); SecondHalf <- (vLen+1L):vecLen
        MInt1 <- MInt[1:vLen]; MInt2 <- MInt[SecondHalf]
        tl <- vector("list",length=facLim)

        for (m in 3:facLim) {
            st1 <- mod.bigz(MInt1[1],FBase[m])
            m1 <- 1L+as.integer(mod.bigz(sieveD[[m]][1] - st1,FBase[m]))
            m2 <- 1L+as.integer(mod.bigz(sieveD[[m]][2] - st1,FBase[m]))
            sl1 <- seq.int(m1,vLen,FBase[m])
            sl2 <- seq.int(m2,vLen,FBase[m])
            tl1 <- list(sl1,sl2)
            st2 <- mod.bigz(MInt2[1],FBase[m])
            m3 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][1] - st2,FBase[m]))
            m4 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][2] - st2,FBase[m]))
            sl3 <- seq.int(m3,vecLen,FBase[m])
            sl4 <- seq.int(m4,vecLen,FBase[m])
            tl2 <- list(sl3,sl4)
            tl[[m]] <- list(tl1,tl2)
        }
        tl
    }

    SieverMod <- function(facLim, FBase, vecLen, SD, MInt, FList, LogFB, Lim, myCol) {

        MyLogs <- rep(0,nrow(SD))

        for (m in 3:facLim) {
            MyBool <- rep(FALSE,vecLen)
            MyBool[c(FList[[m]][[1]][[1]],FList[[m]][[2]][[1]])] <- TRUE
            MyBool[c(FList[[m]][[1]][[2]],FList[[m]][[2]][[2]])] <- TRUE
            temp <- which(MyBool)
            MyLogs[temp] <- MyLogs[temp] + LogFB[m]
        }

        MySieve <- which(MyLogs > Lim)
        MInt <- MInt[MySieve]; NewSD <- SD[MySieve,]
        newLen <- length(MySieve); GoForIT <- FALSE

        MyMat <- matrix(integer(0),nrow=newLen,ncol=myCol)
        MyMat[which(NewSD[,1L] < 0),1L] <- 1L; MyMat[which(NewSD[,1L] > 0),1L] <- 0L
        if ((myCol-1L) - (facLim+1L) > 0L) {MyMat[,((facLim+2L):(myCol-1L))] <- 0L}
        if (newLen==1L) {MyMat <- matrix(MyMat,nrow=1,byrow=TRUE)}

        if (newLen > 0L) {
            GoForIT <- TRUE
            for (m in 1:facLim) {
                vec <- rep(0L,newLen)
                temp <- which((NewSD[,1L]%%FBase[m])==0L)
                NewSD[temp,] <- NewSD[temp,]/FBase[m]; vec[temp] <- 1L
                test <- temp[which((NewSD[temp,]%%FBase[m])==0L)]
                while (length(test)>0L) {
                    NewSD[test,] <- NewSD[test,]/FBase[m]
                    vec[test] <- (vec[test]+1L)
                    test <- test[which((NewSD[test,]%%FBase[m])==0L)]
                }
                MyMat[,m+1L] <- vec
            }
        }

        list(MyMat,NewSD,MInt,GoForIT)
    }

    reduceMatrix <- function(mat) {
        tempMin <- 0L; n1 <- ncol(mat); n2 <- nrow(mat)
        mymax <- 1L
        for (i in 1:n1) {
            temp <- which(mat[,i]==1L)
            t <- which(temp >= mymax)
            if (length(temp)>0L && length(t)>0L) {
                MyMin <- min(temp[t])
                if (!(MyMin==mymax)) {
                    vec <- mat[MyMin,]
                    mat[MyMin,] <- mat[mymax,]
                    mat[mymax,] <- vec
                }
                t <- t[-1]; temp <- temp[t]
                for (j in temp) {mat[j,] <- (mat[j,]+mat[mymax,])%%2L}
                mymax <- mymax+1L
            }
        }

        if (mymax<n2) {simpMat <- mat[-(mymax:n2),]} else {simpMat <- mat}
        lenSimp <- nrow(simpMat)
        if (is.null(lenSimp)) {lenSimp <- 0L}
        mycols <- 1:n1

        if (lenSimp>1L) {
            ## "Diagonalizing" Matrix
            for (i in 1:lenSimp) {
                if (all(simpMat[i,]==0L)) {simpMat <- simpMat[-i,]; next}
                if (!simpMat[i,i]==1L) {
                    t <- min(which(simpMat[i,]==1L))
                    vec <- simpMat[,i]; tempCol <- mycols[i]
                    simpMat[,i] <- simpMat[,t]; mycols[i] <- mycols[t]
                    simpMat[,t] <- vec; mycols[t] <- tempCol
                }
            }

            lenSimp <- nrow(simpMat); MyList <- vector("list",length=n1)
            MyFree <- mycols[which((1:n1)>lenSimp)];  for (i in MyFree) {MyList[[i]] <- i}
            if (is.null(lenSimp)) {lenSimp <- 0L}

            if (lenSimp>1L) {
                for (i in lenSimp:1L) {
                    t <- which(simpMat[i,]==1L)
                    if (length(t)==1L) {
                        simpMat[ ,t] <- 0L
                        MyList[[mycols[i]]] <- 0L
                    } else {
                        t1 <- t[t>i]
                        if (all(t1 > lenSimp)) {
                            MyList[[mycols[i]]] <- MyList[[mycols[t1[1]]]]
                            if (length(t1)>1) {
                                for (j in 2:length(t1)) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[t1[j]]]])}
                            }
                        }
                        else {
                            for (j in t1) {
                                if (length(MyList[[mycols[i]]])==0L) {MyList[[mycols[i]]] <- MyList[[mycols[j]]]}
                                else {
                                    e1 <- which(MyList[[mycols[i]]]%in%MyList[[mycols[j]]])
                                    if (length(e1)==0) {
                                        MyList[[mycols[i]]] <- c(MyList[[mycols[i]]],MyList[[mycols[j]]])
                                    } else {
                                        e2 <- which(!MyList[[mycols[j]]]%in%MyList[[mycols[i]]])
                                        MyList[[mycols[i]]] <- MyList[[mycols[i]]][-e1]
                                        if (length(e2)>0L) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[j]]][e2])}
                                    }
                                }
                            }
                        }
                    }
                }
                TheList <- lapply(MyList, function(x) {if (length(x)==0L) {0} else {x}})
                list(TheList,MyFree)
            } else {
                list(NULL,NULL)
            }
        } else {
            list(NULL,NULL)
        }
    }

    GetFacs <- function(vec1, vec2, n) {
        x <- mod.bigz(prod.bigz(vec1),n)
        y <- mod.bigz(prod.bigz(vec2),n)
        MyAns <- c(gcd.bigz(x-y,n),gcd.bigz(x+y,n))
        MyAns[sort.list(asNumeric(MyAns))]
    }

    SolutionSearch <- function(mymat, M2, n, FB) {

        colTest <- which(apply(mymat, 2, sum) == 0)
        if (length(colTest) > 0) {solmat <- mymat[ ,-colTest]} else {solmat <- mymat}

        if (length(nrow(solmat)) > 0) {
            nullMat <- reduceMatrix(t(solmat %% 2L))
            listSol <- nullMat[[1]]; freeVar <- nullMat[[2]]; LF <- length(freeVar)
        } else {LF <- 0L}

        if (LF > 0L) {
            for (i in 2:min(10^8,(2^LF + 1L))) {
                PosAns <- MyIntToBit(i, LF)
                posVec <- sapply(listSol, function(x) {
                    t <- which(freeVar %in% x)
                    if (length(t)==0L) {
                        0
                    } else {
                        sum(PosAns[t])%%2L
                    }
                })
                ansVec <- which(posVec==1L)
                if (length(ansVec)>0) {

                    if (length(ansVec) > 1L) {
                        myY <- apply(mymat[ansVec,],2,sum)
                    } else {
                        myY <- mymat[ansVec,]
                    }

                    if (sum(myY %% 2) < 1) {
                        myY <- as.integer(myY/2)
                        myY <- pow.bigz(FB,myY[-1])
                        temp <- GetFacs(M2[ansVec], myY, n)
                        if (!(1==temp[1]) && !(1==temp[2])) {
                            return(temp)
                        }
                    }
                }
            }
        }
    }

### Below is the main portion of the Quadratic Sieve

    BegTime <- Sys.time(); MyNum <- as.bigz(MyN); DigCount <- nchar(as.character(MyN))
    P <- PrimeSieve(10^5)
    SqrtInt <- .mpfr2bigz(trunc(sqrt(mpfr(MyNum,sizeinbase(MyNum,b=2)+5L))))

    if (DigCount < 24) {
        DigSize <- c(4,10,15,20,23)
        f_Pos <- c(0.5,0.25,0.15,0.1,0.05)
        MSize <- c(5000,7000,10000,12500,15000)

        if (fudge1==0L) {
            LM1 <- lm(f_Pos ~ DigSize)
            m1 <- summary(LM1)$coefficients[2,1]
            b1 <- summary(LM1)$coefficients[1,1]
            fudge1 <- DigCount*m1 + b1
        }

        if (LenB==0L) {
            LM2 <- lm(MSize ~ DigSize)
            m2 <- summary(LM2)$coefficients[2,1]
            b2 <- summary(LM2)$coefficients[1,1]
            LenB <- ceiling(DigCount*m2 + b2)
        }

        LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
        B <- P[P<=LimB]; B <- B[-1]
        facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
        LenFBase <- length(facBase)+1L
    } else if (DigCount < 67) {
        ## These values were obtained from "The Multiple Polynomial
        ## Quadratic Sieve" by Robert D. Silverman
        DigSize <- c(24,30,36,42,48,54,60,66)
        FBSize <- c(100,200,400,900,1200,2000,3000,4500)
        MSize <- c(5,25,25,50,100,250,350,500)

        LM1 <- loess(FBSize ~ DigSize)
        LM2 <- loess(MSize ~ DigSize)

        if (fudge1==0L) {
            fudge1 <- -0.4
            LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
            myTarget <- ceiling(predict(LM1, DigCount))

            while (LimB < myTarget) {
                LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
                fudge1 <- fudge1+0.001
            }
            B <- P[P<=LimB]; B <- B[-1]
            facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
            LenFBase <- length(facBase)+1L

            while (LenFBase < myTarget) {
                fudge1 <- fudge1+0.005
                LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
                myind <- which(P==max(B))+1L
                myset <- tempP <- P[myind]
                while (tempP < LimB) {
                    myind <- myind + 1L
                    tempP <- P[myind]
                    myset <- c(myset, tempP)
                }

                for (p in myset) {
                    t <- ExpBySquaringBig(MyNum,(p-1)/2,p)==1L
                    if (t) {facBase <- c(facBase,p)}
                }
                B <- c(B, myset)
                LenFBase <- length(facBase)+1L
            }
        } else {
            LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
            B <- P[P<=LimB]; B <- B[-1]
            facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
            LenFBase <- length(facBase)+1L
        }
        if (LenB==0L) {LenB <- 1000*ceiling(predict(LM2, DigCount))}
    } else {
        return("The number you've entered is currently too big for this algorithm!!")
    }

    SieveDist <- lapply(facBase, function(x) TonelliShanks(MyNum,x))
    SieveDist <- c(1L,SieveDist); SieveDist[[1]] <- c(SieveDist[[1]],1L); facBase <- c(2L,facBase)
    Lower <- -LenB; Upper <- LenB; LenB2 <- 2*LenB+1L; MyInterval <- Lower:Upper
    M <- MyInterval + SqrtInt ## Set that will be tested
    SqrDiff <- matrix(sub.bigz(pow.bigz(M,2),MyNum),nrow=length(M),ncol=1L)
    maxM <- max(MyInterval)
    LnFB <- log(facBase)

    ## N.B. primo uses 0.735, as his siever
    ## is more efficient than the one employed here
    if (fudge2==0L) {
        if (DigCount < 8) {
            fudge2 <- 0
        } else if (DigCount < 12) {
            fudge2 <- .7
        } else if (DigCount < 20) {
            fudge2 <- 1.3
        } else {
            fudge2 <- 1.6
        }
    }

    TheCut <- log10(maxM*sqrt(2*asNumeric(MyNum)))*fudge2
    myPrimes <- as.bigz(facBase)

    CoolList <- SieveLists(LenFBase, facBase, LenB2, SieveDist, MyInterval)
    GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M, CoolList, LnFB, TheCut, LenFBase+1L)

    if (GetMatrix[[4]]) {
        newmat <- GetMatrix[[1]]; NewSD <- GetMatrix[[2]]; M <- GetMatrix[[3]]
        NonSplitFacs <- which(abs(NewSD[,1L])>1L)
        newmat <- newmat[-NonSplitFacs, ]
        M <- M[-NonSplitFacs]
        lenM <- length(M)

        if (class(newmat) == "matrix") {
            if (nrow(newmat) > 0) {
                PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
            } else {
                PosAns <- vector()
            }
        } else {
            newmat <- matrix(newmat, nrow = 1)
            PosAns <- vector()
        }
    } else {
        newmat <- matrix(integer(0),ncol=(LenFBase+1L))
        PosAns <- vector()
    }

    Atemp <- .mpfr2bigz(trunc(sqrt(sqrt(mpfr(2*MyNum))/maxM)))
    if (Atemp < max(facBase)) {Atemp <- max(facBase)}; myPoly <- 0L

    while (length(PosAns)==0L) {LegTest <- TRUE
        while (LegTest) {
            Atemp <- nextprime(Atemp)
            Legendre <- asNumeric(ExpBySquaringBig(MyNum,(Atemp-1L)/2,Atemp))
            if (Legendre == 1) {LegTest <- FALSE}
        }

        A <- Atemp^2
        Btemp <- max(TonelliShanks(MyNum, Atemp))
        B2 <- (Btemp + (MyNum - Btemp^2) * inv.bigz(2*Btemp,Atemp))%%A
        C <- as.bigz((B2^2 - MyNum)/A)
        myPoly <- myPoly + 1L

        polySieveD <- lapply(1:LenFBase, function(x) {
            AInv <- inv.bigz(A,facBase[x])
            asNumeric(c(((SieveDist[[x]][1]-B2)*AInv)%%facBase[x],
                        ((SieveDist[[x]][2]-B2)*AInv)%%facBase[x]))
        })

        M1 <- A*MyInterval + B2
        SqrDiff <- matrix(A*pow.bigz(MyInterval,2) + 2*B2*MyInterval + C,nrow=length(M1),ncol=1L)
        CoolList <- SieveLists(LenFBase, facBase, LenB2, polySieveD, MyInterval)
        myPrimes <- c(myPrimes,Atemp)
        LenP <- length(myPrimes)
        GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M1, CoolList, LnFB, TheCut, LenP+1L)

        if (GetMatrix[[4]]) {
            n2mat <- GetMatrix[[1]]; N2SD <- GetMatrix[[2]]; M1 <- GetMatrix[[3]]
            n2mat[,LenP+1L] <- rep(2L,nrow(N2SD))
            if (length(N2SD) > 0) {NonSplitFacs <- which(abs(N2SD[,1L])>1L)} else {NonSplitFacs <- LenB2}
            if (length(NonSplitFacs)<2*LenB) {
                M1 <- M1[-NonSplitFacs]; lenM1 <- length(M1)
                n2mat <- n2mat[-NonSplitFacs,]
                if (lenM1==1L) {n2mat <- matrix(n2mat,nrow=1)}
                if (ncol(newmat) < (LenP+1L)) {
                    numCol <- (LenP + 1L) - ncol(newmat)
                    newmat <-     cbind(newmat,matrix(rep(0L,numCol*nrow(newmat)),ncol=numCol))
                }
                newmat <- rbind(newmat,n2mat); lenM <- lenM+lenM1; M <- c(M,M1)
                if (class(newmat) == "matrix") {
                    if (nrow(newmat) > 0) {
                        PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
                    }
                }
            }
        }
    }

    EndTime <- Sys.time()
    TotTime <- EndTime - BegTime
    print(format(TotTime))
    return(PosAns)
}

со старым алгоритмом QS

> library(gmp)
> library(Rmpfr)

> n3 <- prod(nextprime(urand.bigz(2, 40, 17)))
> system.time(t5 <- QuadSieveAll(n3,0.1,myps))
  user  system elapsed 
164.72    0.77  165.63 
> system.time(t6 <- factorize(n3))
user  system elapsed 
0.1     0.0     0.1 
> all(t5[sort.list(asNumeric(t5))]==t6[sort.list(asNumeric(t6))])
[1] TRUE

С новым много-полиномиальным алгоритмом QS

> QuadSieveMultiPolysAll(n3)
[1] "4.952 secs"
Big Integer ('bigz') object of length 2:
[1] 342086446909 483830424611

> n4 <- prod(nextprime(urand.bigz(2,50,5)))
> QuadSieveMultiPolysAll(n4)   ## With old algo, it took over 4 hours
[1] "1.131717 mins"
Big Integer ('bigz') object of length 2:
[1] 166543958545561 880194119571287

> n5 <- as.bigz("94968915845307373740134800567566911")   ## 35 digits
> QuadSieveMultiPolysAll(n5)
[1] "3.813167 mins"
Big Integer ('bigz') object of length 2:
[1] 216366620575959221 438925910071081891

> system.time(factorize(n5))   ## It appears we are reaching the limits of factorize
   user  system elapsed 
 131.97    0.00  131.98

Примечание: число n5 выше очень интересное. Проверьте это здесь

Точка разрыва !!!!

> n6 <- factorialZ(38) + 1L   ## 45 digits
> QuadSieveMultiPolysAll(n6)
[1] "22.79092 mins"
Big Integer ('bigz') object of length 2:
[1] 14029308060317546154181 37280713718589679646221

> system.time(factorize(n6))   ## Shut it down after 2 days of running

Последний триумф (50 цифр)

> n9 <- prod(nextprime(urand.bigz(2,82,42)))
> QuadSieveMultiPolysAll(n9)
[1] "12.9297 hours"
Big Integer ('bigz') object of length 2:
[1] 2128750292720207278230259 4721136619794898059404993

## Based off of some crude test, factorize(n9) would take more than a year.

Следует отметить, что QS обычно не работает так же хорошо, как алгоритм rho Полларда для меньших чисел, и мощность QS начинает становиться очевидной, когда числа становятся больше. Во всяком случае, как всегда, я надеюсь, что это кого-то вдохновляет! Ура!

7 голосов
/ 27 августа 2015

Следующий подход дает правильные результаты, даже в случае действительно больших чисел (которые должны быть переданы в виде строк).И это действительно быстро.

# TEST
# x <- as.bigz("12345678987654321")
# all_divisors(x)
# all_divisors(x*x)

# x <- pow.bigz(2,89)-1
# all_divisors(x)

library(gmp)
  options(scipen =30)

  sort_listz <- function(z) {
  #==========================
    z <- z[order(as.numeric(z))] # sort(z)
  } # function  sort_listz  


  mult_listz <- function(x,y) {
   do.call('c', lapply(y, function(i) i*x)) 
  } 


  all_divisors <- function(x) {
  #==========================  
  if (abs(x)<=1) return(x) 
  else {

    factorsz <- as.bigz(factorize(as.bigz(x))) # factorize returns up to
    # e.g. x= 12345678987654321  factors: 3 3 3 3 37 37 333667 333667

    factorsz <- sort_listz(factorsz) # vector of primes, sorted

    prime_factorsz <- unique(factorsz)
    #prime_ekt <- sapply(prime_factorsz, function(i) length( factorsz [factorsz==i]))
    prime_ekt <- vapply(prime_factorsz, function(i) sum(factorsz==i), integer(1), USE.NAMES=FALSE)
    spz <- vector() # keep all divisors 
    all <-1
    n <- length(prime_factorsz)
    for (i in 1:n) {
      pr <- prime_factorsz[i]
      pe <- prime_ekt[i]
      all <- all*(pe+1) #counts all divisors 

      prz <- as.bigz(pr)
      pse <- vector(mode="raw",length=pe+1) 
      pse <- c( as.bigz(1), prz)

      if (pe>1) {
        for (k in 2:pe) {
          prz <- prz*pr
          pse[k+1] <- prz
        } # for k
      } # if pe>1

      if (i>1) {
       spz <- mult_listz (spz, pse)         
      } else {
       spz <- pse;
      } # if i>1
    } #for n
    spz <- sort_listz (spz)

    return (spz)
  }  
  } # function  factors_all_divisors  

  #====================================

Уточненная версия, очень быстрая.Код остается простым, читаемым и чистым.

ТЕСТ

#Test 4 (big prime factor)
x <- pow.bigz(2,256)+1 # = 1238926361552897 * 93461639715357977769163558199606896584051237541638188580280321
 system.time(z2 <- all_divisors(x))
#   user  system elapsed 
 #  19.27    1.27   20.56


 #Test 5 (big prime factor)
x <- as.bigz("12345678987654321321") # = 3 * 19 * 216590859432531953

 system.time(x2 <- all_divisors(x^2))
#user  system elapsed 
 #25.65    0.00   25.67  
7 голосов
/ 06 января 2015

Основное обновление

Ниже приведен мой последний алгоритм R-факторизации. Это намного быстрее и отдает должное функции rle .

Алгоритм 3 (обновлен)

library(gmp)
MyFactors <- function(MyN) {
    myRle <- function (x1) {
        n1 <- length(x1)
        y1 <- x1[-1L] != x1[-n1]
        i <- c(which(y1), n1)
        list(lengths = diff(c(0L, i)), values = x1[i], uni = sum(y1)+1L)
    }

    if (MyN==1L) return(MyN)
    else {
        pfacs <- myRle(factorize(MyN))
        unip <- pfacs$values
        pv <- pfacs$lengths
        n <- pfacs$uni
        myf <- unip[1L]^(0L:pv[1L])
        if (n > 1L) {
            for (j in 2L:n) {
                myf <- c(myf, do.call(c,lapply(unip[j]^(1L:pv[j]), function(x) x*myf)))
            }
        }
    }
    myf[order(asNumeric(myf))]  ## 'order' is faster than 'sort.list'
}

Ниже приведены новые тесты (как говорит Дирк Эддельбюттель здесь , " Не могу поспорить с эмпирикой ."):

Случай 1 (большие простые множители)

set.seed(100)
myList <- lapply(1:10^3, function(x) sample(10^6, 10^5))
benchmark(SortList=lapply(myList, function(x) sort.list(x)),
            OrderFun=lapply(myList, function(x) order(x)),
            replications=3,
            columns = c("test", "replications", "elapsed", "relative"))
      test replications elapsed relative
2 OrderFun            3   59.41    1.000
1 SortList            3   61.52    1.036

## The times are limited by "gmp::factorize" and since it relies on
## pseudo-random numbers, the times can vary (i.e. one pseudo random
## number may lead to a factorization faster than others). With this
## in mind, any differences less than a half of second
## (or so) should be viewed as the same. 
x <- pow.bigz(2,256)+1
system.time(z1 <- MyFactors(x))
user  system elapsed
14.94    0.00   14.94
system.time(z2 <- all_divisors(x))      ## system.time(factorize(x))
user  system elapsed                    ##  user  system elapsed
14.94    0.00   14.96                   ## 14.94    0.00   14.94 
all(z1==z2)
[1] TRUE

x <- as.bigz("12345678987654321321")
system.time(x1 <- MyFactors(x^2))
user  system elapsed 
20.66    0.02   20.71
system.time(x2 <- all_divisors(x^2))    ## system.time(factorize(x^2))
user  system elapsed                    ##  user  system elapsed
20.69    0.00   20.69                   ## 20.67    0.00   20.67
all(x1==x2)
[1] TRUE

Случай 2 (меньшие числа)

set.seed(199)
samp <- sample(10^9, 10^5)
benchmark(JosephDivs=sapply(samp, MyFactors),
            DontasDivs=sapply(samp, all_divisors),
            OldDontas=sapply(samp, Oldall_divisors),
            replications=10,
            columns = c("test", "replications", "elapsed", "relative"),
            order = "relative")
        test replications elapsed relative
1 JosephDivs           10  470.31    1.000
2 DontasDivs           10  567.10    1.206  ## with vapply(..., USE.NAMES = FALSE)
3  OldDontas           10  626.19    1.331  ## with sapply

Случай 3 (для полной тщательности)

set.seed(97)
samp <- sample(10^6, 10^4)
benchmark(JosephDivs=sapply(samp, MyFactors),
            DontasDivs=sapply(samp, all_divisors),
            CottonDivs=sapply(samp, get_all_factors),
            ChaseDivs=sapply(samp, FUN),
            replications=5,
            columns = c("test", "replications", "elapsed", "relative"),
            order = "relative")
        test replications elapsed relative
1 JosephDivs            5   22.68    1.000
2 DontasDivs            5   27.66    1.220
3 CottonDivs            5  126.66    5.585
4  ChaseDivs            5  554.25   24.438


Оригинальный пост

г. Алгоритм Коттона - очень хорошая реализация R. Метод грубой силы поможет вам продвинуться далеко вперед и потерпит неудачу с большими числами (он также безумно медленный). Я предоставил три алгоритма, которые будут соответствовать различным потребностям. Первый (это оригинальный алгоритм, который я опубликовал 15 января и который был немного обновлен) - это автономный алгоритм факторизации, который предлагает комбинаторный подход, который эффективен, точен и может быть легко переведен на другие языки. Второй алгоритм - это скорее сито, которое очень быстрое и чрезвычайно полезное, когда вам нужна быстрая факторизация тысяч чисел. Третий - это короткий (опубликованный выше), но мощный автономный алгоритм, который превосходит любое число меньше 2 ^ 70 (я почти все отбросил из своего исходного кода). Я черпал вдохновение в использовании Ричи Коттоном функции plyr::count (это вдохновило меня написать собственную функцию rle, которая очень похожа на plyr::count), чистый способ Джорджа Донтаса обрабатывать тривиальный случай (то есть if (n==1) return(1)) и решение, предоставленное Zelazny7 для вопроса , которое я имел в отношении векторов bigz.

Алгоритм 1 (оригинал)

library(gmp)
factor2 <- function(MyN) {
    if (MyN == 1) return(1L)
    else {
        max_p_div <- factorize(MyN)
        prime_vec <- max_p_div <- max_p_div[sort.list(asNumeric(max_p_div))]
        my_factors <- powers <- as.bigz(vector())
        uni_p <- unique(prime_vec); maxp <- max(prime_vec)
        for (i in 1:length(uni_p)) {
            temp_size <- length(which(prime_vec == uni_p[i]))
            powers <- c(powers, pow.bigz(uni_p[i], 1:temp_size))
        }
        my_factors <- c(as.bigz(1L), my_factors, powers)
        temp_facs <- powers; r <- 2L
        temp_facs2 <- max_p_div2 <- as.bigz(vector())
        while (r <= length(uni_p)) {
            for (i in 1:length(temp_facs)) {
                a <- which(prime_vec >  max_p_div[i])
                temp <- mul.bigz(temp_facs[i], powers[a])
                temp_facs2 <- c(temp_facs2, temp)
                max_p_div2 <- c(max_p_div2, prime_vec[a])
            }
            my_sort <- sort.list(asNumeric(max_p_div2))
            temp_facs <- temp_facs2[my_sort]
            max_p_div <- max_p_div2[my_sort]
            my_factors <- c(my_factors, temp_facs)
            temp_facs2 <- max_p_div2 <- as.bigz(vector()); r <- r+1L
        }
    }
    my_factors[sort.list(asNumeric(my_factors))]
}

Алгоритм 2 (сито)

EfficientFactorList <- function(n) {
    MyFactsList <- lapply(1:n, function(x) 1)
    for (j in 2:n) {
        for (r in seq.int(j, n, j)) {MyFactsList[[r]] <- c(MyFactsList[[r]], j)}
    }; MyFactsList}

Это дает факторизацию каждого числа от 1 до 100 000 менее чем за 2 секунды. Чтобы дать вам представление об эффективности этого алгоритма, время на коэффициент 1 - 100 000 с использованием метода грубой силы составляет около 3 минут.

system.time(t1 <- EfficientFactorList(10^5))
user  system elapsed 
1.04    0.00    1.05 
system.time(t2 <- sapply(1:10^5, MyFactors))
user  system elapsed 
39.21    0.00   39.23 
system.time(t3 <- sapply(1:10^5, all_divisors))
user  system elapsed 
49.03    0.02   49.05

TheTest <- sapply(1:10^5, function(x) all(t2[[x]]==t3[[x]]) && all(asNumeric(t2[[x]])==t1[[x]]) && all(asNumeric(t3[[x]])==t1[[x]]))
all(TheTest)
[1] TRUE



Заключительные мысли

г. Оригинальный комментарий Донтаса о факторизации больших чисел заставил меня задуматься, а как насчет действительно действительно больших чисел ... таких как числа больше 2 ^ 200. Вы увидите, что какой бы алгоритм вы ни выбрали на этой странице, все они будут занимать очень много времени, потому что большинство из них используют gmp::factorize, который использует алгоритм Полларда-Ро . Из этого вопроса этот алгоритм применим только для чисел, меньших 2 ^ 70. В настоящее время я работаю над собственным алгоритмом factorize , в котором будет реализовано Quadratic Sieve , которое должно вывести все эти алгоритмы на следующий уровень.

5 голосов
/ 10 апреля 2018

Многое изменилось в языке R с тех пор, как этот вопрос был задан изначально.В версии 0.6-3 пакета numbers была включена функция divisors, которая очень полезна для получения всех множителей числа.Он удовлетворит потребности большинства пользователей, однако, если вы ищете необработанную скорость или работаете с большими числами, вам понадобится альтернативный метод.Я создал два новых пакета (частично вдохновленных этим вопросом, я мог бы добавить), которые содержат высокооптимизированные функции, нацеленные на подобные проблемы.Первый - RcppAlgos, а другой - bigIntegerAlgos.

RcppAlgos

RcppAlgos содержит две функции для получения делителей чисел, меньших 2^53 - 1: divisorsRcpp (векторизованная функция для быстрого получения полногофакторизация многих чисел) & divisorsSieve (быстро генерирует полную факторизацию по диапазону).Во-первых, мы вычисляем множество случайных чисел, используя divisorsRcpp:

library(gmp)  ## for all_divisors by @GeorgeDontas
library(RcppAlgos)
library(numbers)
options(scipen = 999)
set.seed(42)
testSamp <- sample(10^10, 10)

## vectorized so you can pass the entire vector as an argument
testRcpp <- divisorsRcpp(testSamp)
testDontas <- lapply(testSamp, all_divisors)

identical(lapply(testDontas, as.numeric), testRcpp)
[1] TRUE

А теперь, разложим множество чисел по диапазону, используя divisorsSieve:

system.time(testSieve <- divisorsSieve(10^13, 10^13 + 10^5))
 user  system elapsed 
0.586   0.014   0.602 

system.time(testDontasSieve <- lapply((10^13):(10^13 + 10^5), all_divisors))
  user  system elapsed 
54.327   0.187  54.655 

identical(lapply(testDontasSieve, asNumeric), testSieve)
[1] TRUE

Оба divisorsRcpp иdivisorsSieve - это удобные и гибкие функции, однако они ограничены 2^53 - 1.

bigIntegerAlgos

Пакет bigIntegerAlgos имеет две функции divisorsBig & quadraticSieve, предназначенные для очень больших чисел.Они напрямую связаны с библиотекой C gmp .Для divisorsBig у нас есть:

library(bigIntegerAlgos)
## testSamp is defined above... N.B. divisorsBig is not quite as
## efficient as divisorsRcpp. This is so because divisorsRcpp
## can take advantage of more efficient data types..... it is
## still blazing fast!! See the benchmarks below for reference.
testBig <- divisorsBig(testSamp)

identical(testDontas, testBig)
[1] TRUE

И вот эталонный тест, как определено в моем исходном посте (NB MyFactors заменен на divisorsRcpp и divisorsBig).

## Case 2
library(rbenchmark)
set.seed(199)
samp <- sample(10^9, 10^5)
benchmark(RcppAlgos=divisorsRcpp(samp),
          bigIntegerAlgos=divisorsBig(samp),
          DontasDivs=lapply(samp, all_divisors),
          replications=10,
          columns = c("test", "replications", "elapsed", "relative"),
          order = "relative")

             test replications elapsed relative
1       RcppAlgos           10   8.021    1.000
2 bigIntegerAlgos           10  15.246    1.901
3      DontasDivs           10 400.284   49.905

## Case 3
set.seed(97)
samp <- sample(10^6, 10^4)
benchmark(RcppAlgos=divisorsRcpp(samp),
          bigIntegerAlgos=divisorsBig(samp),
          numbers=lapply(samp, divisors),      ## From the numbers package
          DontasDivs=lapply(samp, all_divisors),
          CottonDivs=lapply(samp, get_all_factors),
          ChaseDivs=lapply(samp, FUN),
          replications=5,
          columns = c("test", "replications", "elapsed", "relative"),
          order = "relative")

             test replications elapsed relative
1       RcppAlgos            5   0.098    1.000
2 bigIntegerAlgos            5   0.330    3.367
3         numbers            5  11.613  118.500
4      DontasDivs            5  16.093  164.214
5      CottonDivs            5  60.428  616.612
6       ChaseDivs            5 342.608 3496.000

Следующие тесты демонстрируют истинную силу базового алгоритма в функции divisorsBig.Факторизуемое число является степенью 10, поэтому основной шаг факторинга можно почти полностью игнорировать (например, system.time(factorize(pow.bigz(10,30))) регистрирует 0 на моей машине).Таким образом, разница во времени обусловлена ​​исключительно тем, как быстро основные факторы могут быть объединены для получения всех факторов.

library(microbenchmark)
powTen <- pow.bigz(10,30)
microbenchmark(divisorsBig(powTen), all_divisors(powTen), unit = "relative")
Unit: relative
                expr      min      lq     mean   median       uq      max neval
 divisorsBig(powTen)  1.00000  1.0000  1.00000  1.00000  1.00000  1.00000   100
all_divisors(powTen) 32.35507 33.3054 33.28786 33.31253 32.11571 40.39236   100

## Negative numbers show an even greater increase in efficiency
negPowTen <- powTen * -1
microbenchmark(divisorsBig(negPowTen), all_divisors(negPowTen), unit = "relative")
Unit: relative
                   expr      min       lq    mean   median       uq      max neval
 divisorsBig(negPowTen)  1.00000  1.00000  1.0000  1.00000  1.00000  1.00000   100
all_divisors(negPowTen) 46.42795 46.22408 43.7964 47.93228 45.33406 26.64657   100


quadraticSieve

Я оставлю вас с двумя демонстрациями quadraticSieve.

n5 <- as.bigz("94968915845307373740134800567566911")
system.time(print(quadraticSieve(n5)))
Big Integer ('bigz') object of length 2:
[1] 216366620575959221 438925910071081891
 user  system elapsed 
4.154   0.021   4.175   ## original time was 3.813167 mins or 228.8 seconds ~ 50x slower

n9 <- prod(nextprime(urand.bigz(2, 82, 42)))
system.time(print(quadraticSieve(n9)))
Big Integer ('bigz') object of length 2:
[1] 2128750292720207278230259 4721136619794898059404993
    user   system  elapsed 
1010.404    2.715 1013.184   ## original time was 12.9297 hours or 46,547 seconds ~ 46x slower

Как вы можете видеть, quadraticSieve намного быстрее, чем исходный QuadSieveMultiPolysAll, однако впереди еще много работы.сделанный.В настоящее время ведутся исследования, направленные на улучшение этой функции, и в настоящее время ставится задача увеличить n9 за минуту.Существуют также планы векторизации quadraticSieve и интеграции divisorsBig с quadraticSieve, поскольку в настоящее время он ограничен тем же алгоритмом, который используется gmp::factorize.

...