изменить: Упс. Просто понял, ОП предложил это решение в вопросе!
Я не знаю, почему процедурам интерполяции требуется так много времени и памяти, чтобы найти узлы структурированных данных, но поскольку вы используете только небольшие части полной сетки, вы можете разбить свою интерполяцию на патчи вещи эффективнее.
from scipy import interpolate
import numpy as np
def my_interp(X, Y, Z, x, y, spn=3):
xs,ys = map(np.array,(x,y))
z = np.zeros(xs.shape)
for i,(x,y) in enumerate(zip(xs,ys)):
# get the indices of the nearest x,y
xi = np.argmin(np.abs(X[0,:]-x))
yi = np.argmin(np.abs(Y[:,0]-y))
xlo = max(xi-spn, 0)
ylo = max(yi-spn, 0)
xhi = min(xi+spn, X[0,:].size)
yhi = min(yi+spn, Y[:,0].size)
# make slices of X,Y,Z that are only a few items wide
nX = X[xlo:xhi, ylo:yhi]
nY = Y[xlo:xhi, ylo:yhi]
nZ = Z[xlo:xhi, ylo:yhi]
intp = interpolate.interp2d(nX, nY, nZ)
z[i] = intp(x,y)[0]
return z
N = 1000
X,Y = np.meshgrid(np.arange(N), np.arange(N))
Z = np.random.random((N, N))
print my_interp(X, Y, Z, [13.2, 999.9], [0.01, 45.3])