Я хочу сделать SVD для разреженной матрицы, используя scipy:
from svd import compute_svd
print("The size of raw matrix: "+str(len(raw_matrix))+" * "+str(len(raw_matrix[0])))
from scipy.sparse import dok_matrix
dok = dok_matrix(raw_matrix)
matrix = compute_svd( dok )
Функция compute_svd - это мой настраиваемый модуль, подобный этому:
def compute_svd( matrix ):
from scipy.sparse import linalg
from scipy import dot, mat
# e.g., matrix = [[2,1,0,0], [4,3,0,0]]
# matrix = mat( matrix );
# print "Original matrix:"
# print matrix
U, s, V = linalg.svds( matrix )
print "U:"
print U
print "sigma:"
print s
print "VT:"
print V
dimensions = 1
rows,cols = matrix.shape
#Dimension reduction, build SIGMA'
for index in xrange(dimensions, rows):
s[index]=0
print "reduced sigma:"
print s
#Reconstruct MATRIX'
# from scipy import dot
reconstructedMatrix= dot(dot(U,linalg.diagsvd(s,len(matrix),len(V))),V)
#Print transform
print "reconstructed:"
print reconstructedMatrix
return reconstructedMatrix
Я получаю исключение:
Traceback (most recent call last):
File "D:\workspace\PyQuEST\src\Practice\baseline_lsi.py", line 96, in <module>
matrix = compute_svd( dok )
File "D:\workspace\PyQuEST\src\Practice\svd.py", line 13, in compute_svd
U, s, V = linalg.svds( matrix )
File "D:\Program\Python26\lib\site-packages\scipy\sparse\linalg\eigen\arpack\arpack.py", line 1596, in svds
eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2)
File "D:\Program\Python26\lib\site-packages\scipy\sparse\linalg\eigen\arpack\arpack.py", line 1541, in eigsh
ncv, v0, maxiter, which, tol)
File "D:\Program\Python26\lib\site-packages\scipy\sparse\linalg\eigen\arpack\arpack.py", line 519, in __init__
ncv, v0, maxiter, which, tol)
File "D:\Program\Python26\lib\site-packages\scipy\sparse\linalg\eigen\arpack\arpack.py", line 326, in __init__
raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'")
ValueError: matrix type must be 'f', 'd', 'F', or 'D'
Я делаю это впервые.Как мне это исправить?Есть идеи?Спасибо!