Алгоритм Штрассена не самый быстрый? - PullRequest
3 голосов
/ 06 июня 2011

Я скопировал алгоритм Штрассена откуда-то, а затем выполнил его.Вот вывод

n = 256
classical took 360ms
strassen 1 took 33609ms
strassen2 took 1172ms
classical took 437ms
strassen 1 took 32891ms
strassen2 took 1156ms
classical took 266ms
strassen 1 took 27234ms
strassen2 took 734ms

, где strassen1 - динамический подход, strassen2 для кеша и classical - умножение старой матрицыЭто означает, что наш старый и легкий классический - лучший.Это правда или я где-то ошибаюсь?Вот код на Java.

import java.util.Random;

class TestIntMatrixMultiplication {

    public static void main (String...args) throws Exception {
        final int n = args.length > 0 ? Integer.parseInt(args[0]) : 256;
        final int seed = args.length > 1 ? Integer.parseInt(args[1]) : 256;
        final Random random = new Random(seed);

        int[][] a, b, c;

        a = new int[n][n];
        b = new int[n][n];
        c = new int[n][n];

        for(int i=0; i<n; i++) {
            for(int j=0; j<n; j++) {
                a[i][j] = random.nextInt(100);
                b[i][j] = random.nextInt(100);
            }
        }



        System.out.println("n = " + n);

        if (a.length < 64) {
            System.out.println("A");
            dumpMatrix(a);
            System.out.println("B");
            dumpMatrix(b);
            System.out.println("classic");
            Classical.mult(c, a, b);
            dumpMatrix(c);
            System.out.println("strassen");
            strassen2.mult(c, a, b);
            dumpMatrix(c);

            return;
        }

        for (int i = 0; i <3; ++i) {
            timeMultiplies1(a, b, c);
            if (n <= 256)
                timeMultiplies2( a, b, c);
            timeMultiplies3( a, b, c);
        }
    }

    static void timeMultiplies1 (int[][] a, int[][] b, int[][] c) {
        final long start = System.currentTimeMillis();
        Classical.mult(c, a, b);
        final long finish = System.currentTimeMillis();
        System.out.println("classical took " + (finish - start) + "ms");
    }
    static void timeMultiplies2(int[][] a, int[][] b, int[][] c) {
        final long start = System.currentTimeMillis();
        strassen1.mult(c, a, b);
        final long finish = System.currentTimeMillis();
        System.out.println("strassen 1 took " + (finish - start) + "ms");
    }
    static void timeMultiplies3 (int[][] a, int[][] b, int[][] c) {
        final long start = System.currentTimeMillis();
        strassen2.mult(c, a, b);
        final long finish = System.currentTimeMillis();
        System.out.println("strassen2 took " + (finish - start) + "ms");
    }

    static void dumpMatrix (int[][] m) {
        for (int[] row : m) {
            System.out.print("[\t");
            for (int val : row) {
                System.out.print(val);
                System.out.print('\t');
            }
            System.out.println(']');
        }
    }
}

class strassen1{

    public String getName () {
        return "Strassen(dynamic)";
    }

    public static int[][] mult (int[][] c, int[][] a, int[][] b) {
        return strassenMatrixMultiplication(a, b);
    }

    public static int [][] strassenMatrixMultiplication(int [][] A, int [][] B) {
        int n = A.length;

        int [][] result = new int[n][n];

        if(n == 1) {
            result[0][0] = A[0][0] * B[0][0];
        } else {
            int [][] A11 = new int[n/2][n/2];
            int [][] A12 = new int[n/2][n/2];
            int [][] A21 = new int[n/2][n/2];
            int [][] A22 = new int[n/2][n/2];

            int [][] B11 = new int[n/2][n/2];
            int [][] B12 = new int[n/2][n/2];
            int [][] B21 = new int[n/2][n/2];
            int [][] B22 = new int[n/2][n/2];

            divideArray(A, A11, 0 , 0);
            divideArray(A, A12, 0 , n/2);
            divideArray(A, A21, n/2, 0);
            divideArray(A, A22, n/2, n/2);

            divideArray(B, B11, 0 , 0);
            divideArray(B, B12, 0 , n/2);
            divideArray(B, B21, n/2, 0);
            divideArray(B, B22, n/2, n/2);

            int [][] P1 = strassenMatrixMultiplication(addMatrices(A11, A22), addMatrices(B11, B22));
            int [][] P2 = strassenMatrixMultiplication(addMatrices(A21, A22), B11);
            int [][] P3 = strassenMatrixMultiplication(A11, subtractMatrices(B12, B22));
            int [][] P4 = strassenMatrixMultiplication(A22, subtractMatrices(B21, B11));
            int [][] P5 = strassenMatrixMultiplication(addMatrices(A11, A12), B22);
            int [][] P6 = strassenMatrixMultiplication(subtractMatrices(A21, A11), addMatrices(B11, B12));
            int [][] P7 = strassenMatrixMultiplication(subtractMatrices(A12, A22), addMatrices(B21, B22));

            int [][] C11 = addMatrices(subtractMatrices(addMatrices(P1, P4), P5), P7);
            int [][] C12 = addMatrices(P3, P5);
            int [][] C21 = addMatrices(P2, P4);
            int [][] C22 = addMatrices(subtractMatrices(addMatrices(P1, P3), P2), P6);

            copySubArray(C11, result, 0 , 0);
            copySubArray(C12, result, 0 , n/2);
            copySubArray(C21, result, n/2, 0);
            copySubArray(C22, result, n/2, n/2);
        }

        return result;
    }

    public static int [][] addMatrices(int [][] A, int [][] B) {
        int n = A.length;

        int [][] result = new int[n][n];

        for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
        result[i][j] = A[i][j] + B[i][j];

        return result;
    }

    public static int [][] subtractMatrices(int [][] A, int [][] B) {
        int n = A.length;

        int [][] result = new int[n][n];

        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                result[i][j] = A[i][j] - B[i][j];

        return result;
    }

    public static void divideArray(int[][] parent, int[][] child, int iB, int jB) {
        for(int i1 = 0, i2=iB; i1<child.length; i1++, i2++)
            for(int j1 = 0, j2=jB; j1<child.length; j1++, j2++)
                child[i1][j1] = parent[i2][j2];
    }

    public static void copySubArray(int[][] child, int[][] parent, int iB, int jB) {
        for(int i1 = 0, i2=iB; i1<child.length; i1++, i2++)
            for(int j1 = 0, j2=jB; j1<child.length; j1++, j2++)
                parent[i2][j2] = child[i1][j1];
    }
}
class strassen2{

    public String getName () {
        return "Strassen(cached)";
    }

    static int [][] p1;
    static int [][] p2;
    static int [][] p3;
    static int [][] p4;
    static int [][] p5;
    static int [][] p6;
    static int [][] p7;
    static int [][] t0;
    static int [][] t1;

    public static int[][] mult (int[][] c, int[][] a, int[][] b) {
        final int n = c.length;

        if (p1 == null || p1.length < n) {
            p1 = new int[n/2][n-1];
            p2 = new int[n/2][n-1];
            p3 = new int[n/2][n-1];
            p4 = new int[n/2][n-1];
            p5 = new int[n/2][n-1];
            p6 = new int[n/2][n-1];
            p7 = new int[n/2][n-1];
            t0 = new int[n/2][n-1];
            t1 = new int[n/2][n-1];
        }

        mult(c, a, b, 0, 0, n, 0);

        return c;
    }

    public static void mult (int[][] c, int[][] a, int[][] b, int i0, int j0, int n, int offs) {
        if(n == 1) {
            c[i0][j0] = a[i0][j0] * b[i0][j0];
        } else {
            final int nBy2 = n/2;

            final int i1 = i0 + nBy2;
            final int j1 = j0 + nBy2;

            // offset applied to 'p' j index so recursive calls don't overwrite data
            final int jp0 = offs;
            final int jp1 = nBy2 + offs;

            // P1 <- (A11 + A22)(B11 + B22)
            //  T0 <- (A11 + A22), T1 <- (B11 + B22), P1 <- T0*T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i0][j + j0] + a[i + i1][j + j1];
                    t1[i + i0][j + jp0] = b[i + i0][j + j0] + b[i + i1][j + j1];
                }
            }

            mult(p1, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P2 <- (A21 + A22)B11
            //  T0 <- (A21 + A22), T1 <- B11, P2 <- T0*T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i1][j + j0] + a[i + i1][j + j1];
                    t1[i + i0][j + jp0] = b[i + i0][j + j0];
                    }
            }

            mult(p2, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P3 <- A11(B12 - B22)
            //  T0 <- A11, T1 <- (B12 - B22), P3 <- T0*T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i0][j + j0];
                    t1[i + i0][j + jp0] = b[i + i0][j + j1] - b[i + i1][j + j1];
                }
            }

            mult(p3, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P4 <- A22(B21 - B11)
            //  T0 <- A22, T1 <- (B21 - B11), P4 <- T0*T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i1][j + j1];
                    t1[i + i0][j + jp0] = b[i + i1][j + j0] - b[i + i0][j + j0];
                }
            }

            mult(p4, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P5 <- (A11 + A12) B22
            //  T0 <- (A11 + A12), T1 <- B22, P5 <- T0*T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i0][j + j0] + a[i + i0][j + j1];
                    t1[i + i0][j + jp0] = b[i + i1][j + j1];
                }
            }

            mult(p5, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P6 <- (A21 - A11)(B11 - B12)
            //  T0 <- (A21 - A11), T1 <- (B11 - B12), P6 <- T0 * T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i1][j + j0] - a[i + i0][j + j0];
                    t1[i + i0][j + jp0] = b[i + i0][j + j0] - b[i + i0][j + j1];
                }
            }

            mult(p6, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // P7 <- (A12 - A22)(B21 + B22)
            //  T0 <- (A12 - A22), T1 <- (B21 + B22), P7 <- T0 * T1
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    t0[i + i0][j + jp0] = a[i + i0][j + j1] - a[i + i1][j + j1];
                    t1[i + i0][j + jp0] = b[i + i1][j + j0] + b[i + i1][j + j1];
                }
            }

            mult(p7, t0, t1, i0, jp0, nBy2, offs + nBy2);

            // combine
            for (int i = 0; i < nBy2; ++i) {
                for (int j = 0; j < nBy2; ++j) {
                    // C11 = P1 + P4 - P5 + P7;
                    c[i + i0][j + j0] = p1[i + i0][j + jp0] + p4[i + i0][j + jp0] - p5[i + i0][j + jp0] + p7[i + i0][j + jp0];
                    // C12 = P3 + P5;
                    c[i + i0][j + j1] = p3[i + i0][j + jp0] + p5[i + i0][j + jp0];
                    // C21 = P2 + P4;
                    c[i + i1][j + j0] = p2[i + i0][j + jp0] + p4[i + i0][j + jp0];
                    // C22 = P1 + P3 - P2 + P6;
                    c[i + i1][j + j1] = p1[i + i0][j + jp0] + p3[i + i0][j + jp0] - p2[i + i0][j + jp0] + p6[i + i0][j + jp0];
                }
            }
        }
    }

    void dumpInternal () {
        System.out.println("P1");
        TestIntMatrixMultiplication.dumpMatrix(p1);
        System.out.println("P2");
        TestIntMatrixMultiplication.dumpMatrix(p2);
        System.out.println("P3");
        TestIntMatrixMultiplication.dumpMatrix(p3);
        System.out.println("P4");
        TestIntMatrixMultiplication.dumpMatrix(p4);
        System.out.println("P5");
        TestIntMatrixMultiplication.dumpMatrix(p5);
        System.out.println("P6");
        TestIntMatrixMultiplication.dumpMatrix(p6);
        System.out.println("P7");
        TestIntMatrixMultiplication.dumpMatrix(p7);
        System.out.println("T0");
        TestIntMatrixMultiplication.dumpMatrix(t0);
        System.out.println("T1");
        TestIntMatrixMultiplication.dumpMatrix(t1);
    }
}


class Classical{
    public String getName () {
        return "classic";
    }

    public static int[][] mult (int[][] c, int[][] a, int[][] b) {
        int n = a.length;

        for(int i=0; i<n; i++) {
            final int[] a_i = a[i];
            final int[] c_i = c[i];

            for(int j=0; j<n; j++) {
                int sum = 0;

                for(int k=0; k<n; k++) {
                    sum += a_i[k] * b[k][j];
                }

                c_i[j] = sum;
            }
        }

        return c;
    }
}

Ответы [ 3 ]

5 голосов
/ 06 июня 2011

Проблемы, которые я вижу:

1) Ваше умножение на Штрассен постоянно динамически распределяет память. Это убьет производительность.

2) Ваше умножение Штрассена должно переключаться на обычное умножение для небольших размеров, а не быть рекурсивным полностью вниз (хотя эта оптимизация делает ваш тест недействительным).

3) Размер вашей матрицы может быть слишком мал, чтобы увидеть разницу.

Вы должны сделать сравнения с несколькими различными размерами. Возможно, 256, 512, 1024, 2048, 4096, 8192 ... Затем составьте график времени и посмотрите на тенденции. Вы, вероятно, захотите размер матрицы в логарифмическом масштабе, если все ее степени равны 2.

Strassen быстрее только для больших N. Насколько большой будет зависеть от реализации. То, что вы сделали для классической, является лишь базовой реализацией и не оптимально для современной машины.

2 голосов
/ 06 июня 2011

Помимо вопросов реализации, я думаю, вы неправильно понимаете производительность алгоритма.Как сказал phkahler, ваши ожидания в отношении производительности алгоритма немного отличаются.Алгоритмы «разделяй и властвуй» хорошо работают для больших входов, потому что они рекурсивно разбивают проблему на подзадачи, которые могут быть решены быстрее.

Однако издержки, связанные с этим действием разделения, могут привести к тому, что алгоритм будет работать (иногда значительно) медленнее для небольших или даже средних входных данных.Как правило, теоретический анализ алгоритма, такого как Штрассен, будет включать в себя так называемое вычисление «точки останова».Это входной размер, при котором издержки разделения становятся предпочтительнее наивного метода.

Ваш код должен включать проверку размера входа, который переключается на наивную технику в точке останова.

1 голос
/ 03 апреля 2014

Запишите, что делает алгоритм Штрассена для матрицы 2 x 2.Подсчитайте операции.Номер абсолютно нелепый.Глупо использовать метод Штрассена для матрицы 2х2.То же самое для матрицы 3 x 3 или 4 x 4 и, вероятно, довольно далеко.

...