Вот один алгоритм Kmeans, использующий расстояние L1 (расстояние Манхэттена).Для общности вектор признаков представлен в виде списка, который легко преобразовать в пустую матрицу.
import random
#Manhattan Distance
def L1(v1,v2):
if(len(v1)!=len(v2):
print “error”
return -1
return sum([abs(v1[i]-v2[i]) for i in range(len(v1))])
# kmeans with L1 distance.
# rows refers to the NxM feature vectors
def kcluster(rows,distance=L1,k=4):# Cited from Programming Collective Intelligence
# Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows])) for i in range(len(rows[0]))]
# Create k randomly placed centroids
clusters=[[random.random( )*(ranges[i][1]-ranges[i][0])+ranges[i][0] for i in range(len(rows[0]))] for j in range(k)]
lastmatches=None
for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]
# Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row):
bestmatch=i
bestmatches[bestmatch].append(j)
## If the results are the same as last time, this is complete
if bestmatches==lastmatches:
break
lastmatches=bestmatches
# Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*len(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=len(bestmatches[i])
clusters[i]=avgs
return bestmatches