Этот вопрос объясняет различные подходы к генерации случайных чисел с различными вероятностями. Согласно этой статье , показанной по этому вопросу, наилучшим таким подходом (с точки зрения временной сложности) является так называемый «метод псевдонима» Майкла Восе.
Для вашего удобства я написал и предоставил здесь реализацию C # генератора случайных чисел, реализующего метод псевдонимов:
public class LoadedDie {
// Initializes a new loaded die. Probs
// is an array of numbers indicating the relative
// probability of each choice relative to all the
// others. For example, if probs is [3,4,2], then
// the chances are 3/9, 4/9, and 2/9, since the probabilities
// add up to 9.
public LoadedDie(int probs){
this.prob=new List<long>();
this.alias=new List<int>();
this.total=0;
this.n=probs;
this.even=true;
}
Random random=new Random();
List<long> prob;
List<int> alias;
long total;
int n;
bool even;
public LoadedDie(IEnumerable<int> probs){
// Raise an error if nil
if(probs==null)throw new ArgumentNullException("probs");
this.prob=new List<long>();
this.alias=new List<int>();
this.total=0;
this.even=false;
var small=new List<int>();
var large=new List<int>();
var tmpprobs=new List<long>();
foreach(var p in probs){
tmpprobs.Add(p);
}
this.n=tmpprobs.Count;
// Get the max and min choice and calculate total
long mx=-1, mn=-1;
foreach(var p in tmpprobs){
if(p<0)throw new ArgumentException("probs contains a negative probability.");
mx=(mx<0 || p>mx) ? p : mx;
mn=(mn<0 || p<mn) ? p : mn;
this.total+=p;
}
// We use a shortcut if all probabilities are equal
if(mx==mn){
this.even=true;
return;
}
// Clone the probabilities and scale them by
// the number of probabilities
for(var i=0;i<tmpprobs.Count;i++){
tmpprobs[i]*=this.n;
this.alias.Add(0);
this.prob.Add(0);
}
// Use Michael Vose's alias method
for(var i=0;i<tmpprobs.Count;i++){
if(tmpprobs[i]<this.total)
small.Add(i); // Smaller than probability sum
else
large.Add(i); // Probability sum or greater
}
// Calculate probabilities and aliases
while(small.Count>0 && large.Count>0){
var l=small[small.Count-1];small.RemoveAt(small.Count-1);
var g=large[large.Count-1];large.RemoveAt(large.Count-1);
this.prob[l]=tmpprobs[l];
this.alias[l]=g;
var newprob=(tmpprobs[g]+tmpprobs[l])-this.total;
tmpprobs[g]=newprob;
if(newprob<this.total)
small.Add(g);
else
large.Add(g);
}
foreach(var g in large)
this.prob[g]=this.total;
foreach(var l in small)
this.prob[l]=this.total;
}
// Returns the number of choices.
public int Count {
get {
return this.n;
}
}
// Chooses a choice at random, ranging from 0 to the number of choices
// minus 1.
public int NextValue(){
var i=random.Next(this.n);
return (this.even || random.Next((int)this.total)<this.prob[i]) ? i : this.alias[i];
}
}
Пример:
var loadedDie=new LoadedDie(new int[]{150,40,15,3}); // list of probabilities for each number:
// 0 is 150, 1 is 40, and so on
int number=loadedDie.nextValue(); // return a number from 0-3 according to given probabilities;
// the number can be an index to another array, if needed
Я размещаю этот код в открытом доступе.