Мой ответ по умолчанию был «хорошо, тогда не делайте этого» (используя foreach ), поскольку пакет snow делает это (надежно!) Для вас.
Но, как отмечает @Spacedman, новый Renaud doRNG - это то, что вы ищете, если хотите остаться в семье doFoo
/ foreach .
Реальный ключ - это вызов типа clusterApply, чтобы получить начальные числа, установленные на всех узлах. И таким образом, который координируется между потоками. О, и я упоминал, что снег Тирни, Россини, Ли и Севчикова делал это для вас почти десятилетие?
Edit: И хотя вы не спрашивали о snow , для полноты вот пример из командной строки:
edd@max:~$ r -lsnow -e'cl <- makeSOCKcluster(c("localhost","localhost"));\
clusterSetupRNG(cl);\
print(do.call("rbind", clusterApply(cl, 1:4, \
function(x) { stats::rnorm(1) } )))'
Loading required package: utils
Loading required package: utils
Loading required package: rlecuyer
[,1]
[1,] -1.1406340
[2,] 0.7049582
[3,] -0.4981589
[4,] 0.4821092
edd@max:~$ r -lsnow -e'cl <- makeSOCKcluster(c("localhost","localhost"));\
clusterSetupRNG(cl);\
print(do.call("rbind", clusterApply(cl, 1:4, \
function(x) { stats::rnorm(1) } )))'
Loading required package: utils
Loading required package: utils
Loading required package: rlecuyer
[,1]
[1,] -1.1406340
[2,] 0.7049582
[3,] -0.4981589
[4,] 0.4821092
edd@max:~$
Редактировать: И для полноты, вот ваш пример в сочетании с тем, что в документах для doRNG
> library(foreach)
R> library(doMC)
Loading required package: multicore
Attaching package: ‘multicore’
The following object(s) are masked from ‘package:parallel’:
mclapply, mcparallel, pvec
R> registerDoMC(2)
R> library(doRNG)
R> set.seed(123)
R> a <- foreach(i=1:2,.combine=cbind) %dopar% {rnorm(5)}
R> set.seed(123)
R> b <- foreach(i=1:2,.combine=cbind) %dopar% {rnorm(5)}
R> identical(a,b)
[1] FALSE ## ie standard approach not reproducible
R>
R> seed <- doRNGseed()
R> a <- foreach(i=1:2,combine=cbind) %dorng% { rnorm(5) }
R> b <- foreach(i=1:2,combine=cbind) %dorng% { rnorm(5) }
R> doRNGseed(seed)
R> a1 <- foreach(i=1:2,combine=cbind) %dorng% { rnorm(5) }
R> b1 <- foreach(i=1:2,combine=cbind) %dorng% { rnorm(5) }
R> identical(a,a1) && identical(b,b1)
[1] TRUE ## all is well now with doRNGseed()
R>