У меня есть проблема с обработкой изображений, которую я сейчас решаю на python, используя numpy и scipy. Вкратце, у меня есть изображение, к которому я хочу применить множество локальных сокращений. Мой прототип кода работает, и окончательные изображения выглядят великолепно. Однако время обработки стало серьезным узким местом в нашем приложении. Можете ли вы помочь мне ускорить мой код обработки изображений?
Я пытался свести наш код к версии мультфильма ниже. Профилирование предполагает, что я трачу большую часть своего времени на интерполяцию. Есть ли очевидные способы ускорить выполнение?
import cProfile, pstats
import numpy
from scipy.ndimage import interpolation
def get_centered_subimage(
center_point, window_size, image):
x, y = numpy.round(center_point).astype(int)
xSl = slice(max(x-window_size-1, 0), x+window_size+2)
ySl = slice(max(y-window_size-1, 0), y+window_size+2)
subimage = image[xSl, ySl]
interpolation.shift(
subimage, shift=(x, y)-center_point, output=subimage)
return subimage[1:-1, 1:-1]
"""In real life, this is experimental data"""
im = numpy.zeros((1000, 1000), dtype=float)
"""In real life, this mask is a non-zero pattern"""
window_radius = 10
mask = numpy.zeros((2*window_radius+1, 2*window_radius+1), dtype=float)
"""The x, y coordinates in the output image"""
new_grid_x = numpy.linspace(0, im.shape[0]-1, 2*im.shape[0])
new_grid_y = numpy.linspace(0, im.shape[1]-1, 2*im.shape[1])
"""The grid we'll end up interpolating onto"""
grid_step_x = new_grid_x[1] - new_grid_x[0]
grid_step_y = new_grid_y[1] - new_grid_y[0]
subgrid_radius = numpy.floor(
(-1 + window_radius * 0.5 / grid_step_x,
-1 + window_radius * 0.5 / grid_step_y))
subgrid = (
window_radius + 2 * grid_step_x * numpy.arange(
-subgrid_radius[0], subgrid_radius[0] + 1),
window_radius + 2 * grid_step_y * numpy.arange(
-subgrid_radius[1], subgrid_radius[1] + 1))
subgrid_points = ((2*subgrid_radius[0] + 1) *
(2*subgrid_radius[1] + 1))
"""The coordinates of the set of spots we we want to contract. In real
life, this set is non-random:"""
numpy.random.seed(0)
num_points = 10000
center_points = numpy.random.random(2*num_points).reshape(num_points, 2)
center_points[:, 0] *= im.shape[0]
center_points[:, 1] *= im.shape[1]
"""The output image"""
final_image = numpy.zeros(
(new_grid_x.shape[0], new_grid_y.shape[0]), dtype=numpy.float)
def profile_me():
for m, cp in enumerate(center_points):
"""Take an image centered on each illumination point"""
spot_image = get_centered_subimage(
center_point=cp, window_size=window_radius, image=im)
if spot_image.shape != (2*window_radius+1, 2*window_radius+1):
continue #Skip to the next spot
"""Mask the image"""
masked_image = mask * spot_image
"""Resample the image"""
nearest_grid_index = numpy.round(
(cp - (new_grid_x[0], new_grid_y[0])) /
(grid_step_x, grid_step_y))
nearest_grid_point = (
(new_grid_x[0], new_grid_y[0]) +
(grid_step_x, grid_step_y) * nearest_grid_index)
new_coordinates = numpy.meshgrid(
subgrid[0] + 2 * (nearest_grid_point[0] - cp[0]),
subgrid[1] + 2 * (nearest_grid_point[1] - cp[1]))
resampled_image = interpolation.map_coordinates(
masked_image,
(new_coordinates[0].reshape(subgrid_points),
new_coordinates[1].reshape(subgrid_points))
).reshape(2*subgrid_radius[1]+1,
2*subgrid_radius[0]+1).T
"""Add the recentered image back to the scan grid"""
final_image[
nearest_grid_index[0]-subgrid_radius[0]:
nearest_grid_index[0]+subgrid_radius[0]+1,
nearest_grid_index[1]-subgrid_radius[1]:
nearest_grid_index[1]+subgrid_radius[1]+1,
] += resampled_image
cProfile.run('profile_me()', 'profile_results')
p = pstats.Stats('profile_results')
p.strip_dirs().sort_stats('cumulative').print_stats(10)
Неясное объяснение того, что делает код:
Мы начинаем с пиксельного 2D-изображения и набора произвольных (x, y) точек в нашем изображении, которые обычно не попадают в целочисленную сетку. Для каждой (x, y) точки я хочу умножить изображение на маленькую маску с центром точно в этой точке. Затем мы сокращаем / расширяем замаскированную область на конечную величину, прежде чем окончательно добавить это обработанное подизображение к конечному изображению, которое может не иметь такой же размер пикселя, как исходное изображение. (Не мое лучшее объяснение. Ах, хорошо).