Простой обратный код матрицы 3х3 (C ++) - PullRequest
35 голосов
/ 12 июня 2009

Какой самый простой способ вычислить обратную матрицу 3x3?

Я просто ищу короткий фрагмент кода, который поможет добиться успеха для неособых матриц, возможно, используя правило Крамера Это не должно быть высоко оптимизировано. Я бы предпочел простоту, а не скорость. Я бы не стал ссылаться на дополнительные библиотеки.

Ответы [ 13 ]

0 голосов
/ 08 августа 2013
//Title: Matrix Header File
//Writer: Say OL
//This is a beginner code not an expert one
//No responsibilty for any errors
//Use for your own risk
using namespace std;
int row,col,Row,Col;
double Coefficient;
//Input Matrix
void Input(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
        {
            cout<<"e["<<row<<"]["<<col<<"]=";
            cin>>Matrix[row][col];
        }
}
//Output Matrix
void Output(double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
    {
        for(col=1;col<=Col;col++)
            cout<<Matrix[row][col]<<"\t";
        cout<<endl;
    }
}
//Copy Pointer to Matrix
void CopyPointer(double (*Pointer)[9],double Matrix[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            Matrix[row][col]=Pointer[row][col];
}
//Copy Matrix to Matrix
void CopyMatrix(double MatrixInput[9][9],double MatrixTarget[9][9],int Row,int Col)
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTarget[row][col]=MatrixInput[row][col];
}
//Transpose of Matrix
double MatrixTran[9][9];
double (*(Transpose)(double MatrixInput[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixTran[col][row]=MatrixInput[row][col];
    return MatrixTran;
}
//Matrix Addition
double MatrixAdd[9][9];
double (*(Addition)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixAdd[row][col]=MatrixA[row][col]+MatrixB[row][col];
    return MatrixAdd;
}
//Matrix Subtraction
double MatrixSub[9][9];
double (*(Subtraction)(double MatrixA[9][9],double MatrixB[9][9],int Row,int Col))[9]
{
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            MatrixSub[row][col]=MatrixA[row][col]-MatrixB[row][col];
    return MatrixSub;
}
//Matrix Multiplication
int mRow,nCol,pCol,kcol;
double MatrixMult[9][9];
double (*(Multiplication)(double MatrixA[9][9],double MatrixB[9][9],int mRow,int nCol,int pCol))[9]
{
    for(row=1;row<=mRow;row++)
        for(col=1;col<=pCol;col++)
        {
            MatrixMult[row][col]=0.0;
            for(kcol=1;kcol<=nCol;kcol++)
                MatrixMult[row][col]+=MatrixA[row][kcol]*MatrixB[kcol][col];
        }
    return MatrixMult;
}
//Interchange Two Rows
double RowTemp[9][9];
double MatrixInter[9][9];
double (*(InterchangeRow)(double MatrixInput[9][9],int Row,int Col,int iRow,int jRow))[9]
{
    CopyMatrix(MatrixInput,MatrixInter,Row,Col);
    for(col=1;col<=Col;col++)
    {
        RowTemp[iRow][col]=MatrixInter[iRow][col];
        MatrixInter[iRow][col]=MatrixInter[jRow][col];
        MatrixInter[jRow][col]=RowTemp[iRow][col];
    }
    return MatrixInter;
}
//Pivote Downward
double MatrixDown[9][9];
double (*(PivoteDown)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixDown,Row,Col);
    Coefficient=MatrixDown[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixDown[tRow][col]/=Coefficient;
    if(tRow<Row)
        for(row=tRow+1;row<=Row;row++)
        {
            Coefficient=MatrixDown[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixDown[row][col]-=Coefficient*MatrixDown[tRow][col];
        }
return MatrixDown;
}
//Pivote Upward
double MatrixUp[9][9];
double (*(PivoteUp)(double MatrixInput[9][9],int Row,int Col,int tRow,int tCol))[9]
{
    CopyMatrix(MatrixInput,MatrixUp,Row,Col);
    Coefficient=MatrixUp[tRow][tCol];
    if(Coefficient!=1.0)
        for(col=1;col<=Col;col++)
            MatrixUp[tRow][col]/=Coefficient;
    if(tRow>1)
        for(row=tRow-1;row>=1;row--)
        {
            Coefficient=MatrixUp[row][tCol];
            for(col=1;col<=Col;col++)
                MatrixUp[row][col]-=Coefficient*MatrixUp[tRow][col];
        }
    return MatrixUp;
}
//Pivote in Determinant
double MatrixPiv[9][9];
double (*(Pivote)(double MatrixInput[9][9],int Dim,int pTarget))[9]
{
    CopyMatrix(MatrixInput,MatrixPiv,Dim,Dim);
    for(row=pTarget+1;row<=Dim;row++)
    {
        Coefficient=MatrixPiv[row][pTarget]/MatrixPiv[pTarget][pTarget];
        for(col=1;col<=Dim;col++)
        {
            MatrixPiv[row][col]-=Coefficient*MatrixPiv[pTarget][col];
        }
    }
    return MatrixPiv;
}
//Determinant of Square Matrix
int dCounter,dRow;
double Det;
double MatrixDet[9][9];
double Determinant(double MatrixInput[9][9],int Dim)
{
    CopyMatrix(MatrixInput,MatrixDet,Dim,Dim);
    Det=1.0;
    if(Dim>1)
    {
        for(dRow=1;dRow<Dim;dRow++)
        {
            dCounter=dRow;
            while((MatrixDet[dRow][dRow]==0.0)&(dCounter<=Dim))
            {
                dCounter++;
                Det*=-1.0;
                CopyPointer(InterchangeRow(MatrixDet,Dim,Dim,dRow,dCounter),MatrixDet,Dim,Dim);
            }
            if(MatrixDet[dRow][dRow]==0)
            {
                Det=0.0;
                break;
            }
            else
            {
                Det*=MatrixDet[dRow][dRow];
                CopyPointer(Pivote(MatrixDet,Dim,dRow),MatrixDet,Dim,Dim);
            }
        }
        Det*=MatrixDet[Dim][Dim];
    }
    else Det=MatrixDet[1][1];
    return Det;
}
//Matrix Identity
double MatrixIdent[9][9];
double (*(Identity)(int Dim))[9]
{
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            if(row==col)
                MatrixIdent[row][col]=1.0;
            else
                MatrixIdent[row][col]=0.0;
    return MatrixIdent;
}
//Join Matrix to be Augmented Matrix
double MatrixJoin[9][9];
double (*(JoinMatrix)(double MatrixA[9][9],double MatrixB[9][9],int Row,int ColA,int ColB))[9]
{
    Col=ColA+ColB;
    for(row=1;row<=Row;row++)
        for(col=1;col<=Col;col++)
            if(col<=ColA)
                MatrixJoin[row][col]=MatrixA[row][col];
            else
                MatrixJoin[row][col]=MatrixB[row][col-ColA];
    return MatrixJoin;
}
//Inverse of Matrix
double (*Pointer)[9];
double IdentMatrix[9][9];
int Counter;
double MatrixAug[9][9];
double MatrixInv[9][9];
double (*(Inverse)(double MatrixInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+Dim;
    Pointer=Identity(Dim);
    CopyPointer(Pointer,IdentMatrix,Dim,Dim);
    Pointer=JoinMatrix(MatrixInput,IdentMatrix,Dim,Dim,Dim);
    CopyPointer(Pointer,MatrixAug,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixAug,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixAug,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=Dim;col++)
            MatrixInv[row][col]=MatrixAug[row][col+Dim];
    return MatrixInv;
}
//Gauss-Jordan Elemination
double MatrixGJ[9][9];
double VectorGJ[9][9];
double (*(GaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim))[9]
{
    Row=Dim;
    Col=Dim+1;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,1);
    CopyPointer(Pointer,MatrixGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGJ,Row,Col);
    }
    for(row=1;row<=Dim;row++)
        for(col=1;col<=1;col++)
            VectorGJ[row][col]=MatrixGJ[row][col+Dim];
    return VectorGJ;
}
//Generalized Gauss-Jordan Elemination
double MatrixGGJ[9][9];
double VectorGGJ[9][9];
double (*(GeneralizedGaussJordan)(double MatrixInput[9][9],double VectorInput[9][9],int Dim,int vCol))[9]
{
    Row=Dim;
    Col=Dim+vCol;
    Pointer=JoinMatrix(MatrixInput,VectorInput,Dim,Dim,vCol);
    CopyPointer(Pointer,MatrixGGJ,Row,Col);
    for(Counter=1;Counter<=Dim;Counter++)   
    {
        Pointer=PivoteDown(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(Counter=Dim;Counter>1;Counter--)
    {
        Pointer=PivoteUp(MatrixGGJ,Row,Col,Counter,Counter);
        CopyPointer(Pointer,MatrixGGJ,Row,Col);
    }
    for(row=1;row<=Row;row++)
        for(col=1;col<=vCol;col++)
            VectorGGJ[row][col]=MatrixGGJ[row][col+Dim];
    return VectorGGJ;
}
//Matrix Sparse, Three Diagonal Non-Zero Elements
double MatrixSpa[9][9];
double (*(Sparse)(int Dimension,double FirstElement,double SecondElement,double ThirdElement))[9]
{
    MatrixSpa[1][1]=SecondElement;
    MatrixSpa[1][2]=ThirdElement;
    MatrixSpa[Dimension][Dimension-1]=FirstElement;
    MatrixSpa[Dimension][Dimension]=SecondElement;
    for(int Counter=2;Counter<Dimension;Counter++)
    {
        MatrixSpa[Counter][Counter-1]=FirstElement;
        MatrixSpa[Counter][Counter]=SecondElement;
        MatrixSpa[Counter][Counter+1]=ThirdElement;
    }
    return MatrixSpa;
}

Скопируйте и сохраните указанный выше код как Matrix.h, затем попробуйте следующий код:

#include<iostream>
#include<conio.h>
#include"Matrix.h"
int Dim;
double Matrix[9][9];
int main()
{
    cout<<"Enter your matrix dimension: ";
    cin>>Dim;
    Input(Matrix,Dim,Dim);
    cout<<"Your matrix:"<<endl;
    Output(Matrix,Dim,Dim);
    cout<<"The inverse:"<<endl;
    Output(Inverse(Matrix,Dim),Dim,Dim);
    getch();
}
0 голосов
/ 02 марта 2013

Я пошел дальше и написал это на python, так как я думаю, что это намного более читабельно, чем в c ++ для такой проблемы. Порядок функций - это порядок операций для решения этого вручную через это видео . Просто импортируйте это и вызовите «print_invert» в вашей матрице.

def print_invert (matrix):
  i_matrix = invert_matrix (matrix)
  for line in i_matrix:
    print (line)
  return

def invert_matrix (matrix):
  determinant = str (determinant_of_3x3 (matrix))
  cofactor = make_cofactor (matrix)
  trans_matrix = transpose_cofactor (cofactor)

  trans_matrix[:] = [[str (element) +'/'+ determinant for element in row] for row in trans_matrix]

  return trans_matrix

def determinant_of_3x3 (matrix):
  multiplication = 1
  neg_multiplication = 1
  total = 0
  for start_column in range (3):
    for row in range (3):
      multiplication *= matrix[row][(start_column+row)%3]
      neg_multiplication *= matrix[row][(start_column-row)%3]
    total += multiplication - neg_multiplication
    multiplication = neg_multiplication = 1
  if total == 0:
    total = 1
  return total

def make_cofactor (matrix):
  cofactor = [[0,0,0],[0,0,0],[0,0,0]]
  matrix_2x2 = [[0,0],[0,0]]
  # For each element in matrix...
  for row in range (3):
    for column in range (3):

      # ...make the 2x2 matrix in this inner loop
      matrix_2x2 = make_2x2_from_spot_in_3x3 (row, column, matrix)
      cofactor[row][column] = determinant_of_2x2 (matrix_2x2)

  return flip_signs (cofactor)

def make_2x2_from_spot_in_3x3 (row, column, matrix):
  c_count = 0
  r_count = 0
  matrix_2x2 = [[0,0],[0,0]]
  # ...make the 2x2 matrix in this inner loop
  for inner_row in range (3):
    for inner_column in range (3):
      if row is not inner_row and inner_column is not column:
        matrix_2x2[r_count % 2][c_count % 2] = matrix[inner_row][inner_column]
        c_count += 1
    if row is not inner_row:
      r_count += 1
  return matrix_2x2

def determinant_of_2x2 (matrix):
  total = matrix[0][0] * matrix [1][1]
  return total - (matrix [1][0] * matrix [0][1])

def flip_signs (cofactor):
  sign_pos = True 
  # For each element in matrix...
  for row in range (3):
    for column in range (3):
      if sign_pos:
        sign_pos = False
      else:
        cofactor[row][column] *= -1
        sign_pos = True
  return cofactor

def transpose_cofactor (cofactor):
  new_cofactor = [[0,0,0],[0,0,0],[0,0,0]]
  for row in range (3):
    for column in range (3):
      new_cofactor[column][row] = cofactor[row][column]
  return new_cofactor
0 голосов
/ 19 февраля 2013
#include <iostream>
using namespace std;

int main()
{
    double A11, A12, A13;
    double A21, A22, A23;
    double A31, A32, A33;

    double B11, B12, B13;
    double B21, B22, B23;
    double B31, B32, B33;

    cout << "Enter all number from left to right, from top to bottom, and press enter after every number: ";
    cin  >> A11;
    cin  >> A12;
    cin  >> A13;
    cin  >> A21;
    cin  >> A22;
    cin  >> A23;
    cin  >> A31;
    cin  >> A32;
    cin  >> A33;

    B11 = 1 / ((A22 * A33) - (A23 * A32));
    B12 = 1 / ((A13 * A32) - (A12 * A33));
    B13 = 1 / ((A12 * A23) - (A13 * A22));
    B21 = 1 / ((A23 * A31) - (A21 * A33));
    B22 = 1 / ((A11 * A33) - (A13 * A31));
    B23 = 1 / ((A13 * A21) - (A11 * A23));
    B31 = 1 / ((A21 * A32) - (A22 * A31));
    B32 = 1 / ((A12 * A31) - (A11 * A32));
    B33 = 1 / ((A11 * A22) - (A12 * A21));

    cout << B11 << "\t" << B12 << "\t" << B13 << endl;
    cout << B21 << "\t" << B22 << "\t" << B23 << endl;
    cout << B31 << "\t" << B32 << "\t" << B33 << endl;

    return 0;
}
...