Из моего ответа в БФБ здесь .
Я добавляю его в stackoverflow, поскольку это другой подход, который не основан на фиксированных шагах итерации, а полагается на сходимость расстояний между точками к среднему расстоянию.
Таким образом, расчет короче, поскольку он зависит только от количества искомых вершин и точности, которую нужно достичь (около 6 итераций для менее 0,01%).
Принцип:
0 / Первый шаг: вычислить точки, как правило, используя a * cos (t) и b * sin (t)
1 / Рассчитать длину между вершинами
2 / Отрегулируйте изменения углов в зависимости от зазора между каждым расстоянием до среднего расстояния
3 / Переставить точки
4 / Выход при достижении желаемой точности или возврат к 1 /
import bpy, bmesh
from math import radians, sqrt, cos, sin
rad90 = radians( 90.0 )
rad180 = radians( 180.0 )
def createVertex( bm, x, y ): #uses bmesh to create a vertex
return bm.verts.new( [x, y, 0] )
def listSum( list, index ): #helper to sum on a list
sum = 0
for i in list:
sum = sum + i[index]
return sum
def calcLength( points ): #calculate the lenghts for consecutives points
prevPoint = points[0]
for point in points :
dx = point[0] - prevPoint[0]
dy = point[1] - prevPoint[1]
dist = sqrt( dx * dx + dy *dy )
point[3] = dist
prevPoint = point
def calcPos( points, a, b ): #calculate the positions following the angles
angle = 0
for i in range( 1, len(points) - 1 ):
point = points[i]
angle += point[2]
point[0] = a * cos( angle )
point[1] = b * sin( angle )
def adjust( points ): #adjust the angle by comparing each length to the mean length
totalLength = listSum( points, 3 )
averageLength = totalLength / (len(points) - 1)
maxRatio = 0
for i in range( 1, len(points) ):
point = points[i]
ratio = (averageLength - point[3]) / averageLength
point[2] = (1.0 + ratio) * point[2]
absRatio = abs( ratio )
if absRatio > maxRatio:
maxRatio = absRatio
return maxRatio
def ellipse( bm, a, b, steps, limit ):
delta = rad90 / steps
angle = 0.0
points = [] #will be a list of [ [x, y, angle, length], ...]
for step in range( steps + 1 ) :
x = a * cos( angle )
y = b * sin( angle )
points.append( [x, y, delta, 0.0] )
angle += delta
print( 'start' )
doContinue = True
while doContinue:
calcLength( points )
maxRatio = adjust( points )
calcPos( points, a, b )
doContinue = maxRatio > limit
print( maxRatio )
verts = []
for point in points:
verts.append( createVertex( bm, point[0], point[1] ) )
for i in range( 1, len(verts) ):
bm.edges.new( [verts[i - 1], verts[i]] )
A = 4
B = 6
bm = bmesh.new()
ellipse( bm, A, B, 32, 0.00001 )
mesh = bpy.context.object.data
bm.to_mesh(mesh)
mesh.update()