Как мне реализовать GNU Prolog nth (X, List, Item)? - PullRequest
1 голос
/ 25 апреля 2011

Я пытаюсь использовать API, который в основном совместим с GNU Prolog.К сожалению, предиката GNU Prolog nth (X, List, Item) там нет.

Как бы вы реализовали nth с использованием предикатов ISO?

Описание: nth (X, List, Item) оценивается какtrue, если X-й элемент в Списке - Item.

Я снова в тупике.Пожалуйста, помогите.

Спасибо заранее.

Ответы [ 3 ]

3 голосов
/ 25 апреля 2011

Существует два предиката nth: nth0/3 и nth1/3. Вы можете прочитать, что они сделали в help(nth0) и help(nth1).

Итак, ответ на ваш вопрос

nth( X, List, Item ) :-
    nth1( X, List, Elem ), !.

Вы можете использовать, а не использовать ! - все, что вы хотите.

Но нет смысла делать такие служебные предикаты - лучше использовать стандартные.

2 голосов
/ 25 апреля 2011

SWI-Prolog - это пролог с открытым исходным кодом, поэтому одно из решений вашего вопроса - посмотреть, как все реализовано в SWI-Prolog. Вы можете вызвать предикат listing/1 в случае, если вы не знаете, где находятся исходные файлы на вашем компьютере, т.е.

?- listing(nth0).
lists:nth0(A, B, C) :-
    integer(A), !,
    A>=0,
    nth0_det(A, B, C).
lists:nth0(A, B, C) :-
    var(A), !,
    nth_gen(B, C, 0, A).

true.

?- listing(nth0_det).
lists:nth0_det(0, [A|_], A) :- !.
lists:nth0_det(1, [_, A|_], A) :- !.
lists:nth0_det(2, [_, _, A|_], A) :- !.
lists:nth0_det(3, [_, _, _, A|_], A) :- !.
lists:nth0_det(4, [_, _, _, _, A|_], A) :- !.
lists:nth0_det(5, [_, _, _, _, _, A|_], A) :- !.
lists:nth0_det(A, [_, _, _, _, _, _|C], D) :-
    B is A+ -6,
    B>=0,
    nth0_det(B, C, D).

true.

?- listing(nth_gen).
lists:nth_gen([A|_], A, B, B).
lists:nth_gen([_|B], C, A, E) :-
    succ(A, D),
    nth_gen(B, C, D, E).

true.
2 голосов
/ 25 апреля 2011

см. Этот pl файл с nth0(+N, ?List, ?Elem, ?Rest):

%   Purpose: list processing utilities
%   This module requires
%   select/3    (from SetUtl.Pl) for perm/2
%   listtoset/2 (from SetUtl.Pl) for remove_dups/2
%   If you don't want those routines, it can be used on its own.
%   I am not sure how much of the original code was by Bob Welham
%   and how much by Lawrence Byrd.  The layout and comments are by
%   R.A.O'Keefe, as are nth*, same_length, shorter_list, and subseq*.
%   Keys_and_values has moved to PROJEC.PL.

:- public
    append/3,           %   List x List -> List
    correspond/4,           %   Elem <- List x List -> Elem
    delete/3,           %   List x Elem -> List
    last/2,             %   List -> Elem
    nextto/3,           %   Elem, Elem <- List
    nmember/3,          %   Elem <- Set -> Integer
    nmembers/3,         %   List x Set -> Set
    nth0/3,             %   Integer x List -> Elem
    nth0/4,             %   Integer x List -> Elem x List
    nth1/3,             %   Integer x List -> Elem
    nth1/4,             %   Integer x List -> Elem x List
    numlist/3,          %   Integer x Integer -> List
    perm/2,             %   List -> List
    perm2/4,            %   Elem x Elem -> Elem x Elem
    remove_dups/2,          %   List -> Set
    rev/2,              %   List -> List
    reverse/2,          %   List -> List
    same_length/2,          %   List x List ->
    select/4,           %   Elem x List x Elem -> List
    shorter_list/2,         %   List x List ->
    subseq/3,           %   List -> List x List
    subseq0/2,          %   List -> List
    subseq1/2,          %   List -> List
    sumlist/2.          %   List -> Integer

:- mode
    append(?, ?, ?),
    correspond(?, +, +, ?),
    delete(+, +, -),
    last(?, ?),
    nextto(?, ?, ?),
    nmember(?, +, ?),
    nmembers(+, +, -),
    nth0(+, +, ?),
    nth0(+, ?, ?, ?),
    nth1(+, +, ?),
    nth1(+, ?, ?, ?),
    numlist(+, +, ?),
    perm(?, ?),
    perm2(?,?, ?,?),
    remove_dups(+, ?),
    rev(?, ?),
    reverse(?, ?),
    reverse(?, +, ?),
    same_length(?, ?),
    select(?, ?, ?, ?),
    shorter_list(?, +),
    subseq(?, ?, ?),
    subseq0(+, ?),
    subseq1(+, ?),
    sumlist(+, ?),
    sumlist(+, +, ?).


%   append(Prefix, Suffix, Combined)
%   is true when all three arguments are lists, and the members of Combined
%   are the members of Prefix followed by the members of Suffix.  It may be
%   used to form Combined from a given Prefix and Suffix, or to take a given
%   Combined apart.  E.g. we could define member/2 (from SetUtl.Pl) as
%   member(X, L) :- append(_, [X|_], L).

append([], L, L).
append([H|T], L, [H|R]) :-
    append(T, L, R).



%   correspond(X, Xlist, Ylist, Y)
%   is true when Xlist and Ylist are lists, X is an element of Xlist, Y is
%   an element of Ylist, and X and Y are in similar places in their lists.

correspond(X, [X|_], [Y|_], Y) :- !.
correspond(X, [_|T], [_|U], Y) :-
    correspond(X, T, U, Y).

%   delete(List, Elem, Residue)
%   is true when List is a list, in which Elem may or may not occur, and
%   Residue is a copy of List with all elements equal to Elem deleted.

delete([], _, []) :- !.
delete([Kill|Tail], Kill, Rest) :- !,
    delete(Tail, Kill, Rest).
    delete([Head|Tail], Kill, [Head|Rest]) :- !,
        delete(Tail, Kill, Rest).

%   last(Last, List)
%   is true when List is a List and Last is its last element.  This could
%   be defined as last(X,L) :- append(_, [X], L).

last(Last, [Last]) :- !.
last(Last, [_|List]) :-
    last(Last, List).

%   nextto(X, Y, List)
%   is true when X and Y appear side-by-side in List.  It could be written as
%   nextto(X, Y, List) :- append(_, [X,Y], List).
%   It may be used to enumerate successive pairs from the list.

nextto(X,Y, [X,Y|_]).
nextto(X,Y, [_|List]) :-
    nextto(X,Y, List).

%   nmember(Elem, List, Index) Possible Calling Sequences
%   nmember(+,+,-) or nmember(-,+,+) or nmember(-,+,-).
%   True when Elem is the Indexth member of List.
%   It may be used to select a particular element, or to find where some
%   given element occurs, or to enumerate the elements and indices togther.

nmember(Elem, [Elem|_], 1).
nmember(Elem, [_|List], N) :-
    nmember(Elem, List, M),
        N is M+1.

% nmembers(+Indices, +Answers, -Ans) or nmembers(-Indices, +Answers, +Ans)
% (But not nmembers(-,+,-), it loops.)
% Like nmember/3 except that it looks for a list of arguments in a list
% of positions.
% eg.   nmembers([3,5,1], [a,b,c,d,e,f,g,h], [c,e,a]) is true 

nmembers([], _, []).
nmembers([N|Rest], Answers, [Ans|RestAns]) :-
    nmember(Ans, Answers, N),
        nmembers(Rest, Answers, RestAns).

%   nth0(+N, +List, ?Elem) is true when Elem is the Nth member of List,
%   counting the first as element 0.  (That is, throw away the first
%   N elements and unify Elem with the next.)  It can only be used to
%   select a particular element given the list and index.  For that
%   task it is more efficient than nmember.
%   nth1(+N, +List, ?Elem) is the same as nth0, except that it counts from
%   1, that is nth(1, [H|_], H).

nth0(0, [Head|_], Head) :- !.

nth0(N, [_|Tail], Elem) :-
    nonvar(N),
    M is N-1,
    nth0(M, Tail, Elem).

nth0(N,[_|T],Item) :-       % Clause added KJ 4-5-87 to allow mode
    var(N),         % nth0(-,+,+)
    nth0(M,T,Item),
    N is M + 1.


nth1(1, [Head|_], Head) :- !.

nth1(N, [_|Tail], Elem) :-
    nonvar(N),
    M is N-1,           % should be succ(M, N)
    nth1(M, Tail, Elem).

nth1(N,[_|T],Item) :-       % Clause added KJ 4-5-87 to allow mode
    var(N),         % nth1(-,+,+)
    nth1(M,T,Item),
    N is M + 1.

%   nth0(+N, ?List, ?Elem, ?Rest) unifies Elem with the Nth element of List,
%   counting from 0, and Rest with the other elements.  It can be used
%   to select the Nth element of List (yielding Elem and Rest), or to 
%   insert Elem before the Nth (counting from 1) element of Rest, when
%   it yields List, e.g. nth0(2, List, c, [a,b,d,e]) unifies List with
%   [a,b,c,d,e].  nth1 is the same except that it counts from 1.  nth1
%   can be used to insert Elem after the Nth element of Rest.

nth0(0, [Head|Tail], Head, Tail) :- !.

nth0(N, [Head|Tail], Elem, [Head|Rest]) :-
    nonvar(N),
    M is N-1,
    nth0(M, Tail, Elem, Rest).

nth0(N, [Head|Tail], Elem, [Head|Rest]) :-  % Clause added KJ 4-5-87
    var(N),                 % to allow mode
    nth0(M, Tail, Elem, Rest),      % nth0(-,+,+,?).
    N is M+1.


nth1(1, [Head|Tail], Head, Tail) :- !.

nth1(N, [Head|Tail], Elem, [Head|Rest]) :-
    nonvar(N),
    M is N-1,
    nth1(M, Tail, Elem, Rest).

nth1(N, [Head|Tail], Elem, [Head|Rest]) :-  % Clause added KJ 4-5-87
    var(N),                 % to allow mode
    nth1(M, Tail, Elem, Rest),      % nth1(-,+,+,?).
    N is M+1.

%   numlist(Lower, Upper, List)
%   is true when List is [Lower, ..., Upper]
%   Note that Lower and Upper must be integers, not expressions, and
%   that if Upper < Lower numlist will FAIL rather than producing an
%   empty list.

numlist(Upper, Upper, [Upper]) :- !.
numlist(Lower, Upper, [Lower|Rest]) :-
    Lower < Upper,
    Next is Lower+1,
    numlist(Next, Upper, Rest).



%   perm(List, Perm)
%   is true when List and Perm are permutations of each other.  Of course,
%   if you just want to test that, the best way is to keysort/2 the two
%   lists and see if the results are the same.  Or you could use list_to_bag
%   (from BagUtl.Pl) to see if they convert to the same bag.  The point of
%   perm is to generate permutations.  The arguments may be either way round,
%   the only effect will be the order in which the permutations are tried.
%   Be careful: this is quite efficient, but the number of permutations of an
%   N-element list is N!, even for a 7-element list that is 5040.

perm([], []).
perm(List, [First|Perm]) :-
    select(First, List, Rest),  %  tries each List element in turn
    perm(Rest, Perm).



%   perm2(A,B, C,D)
%   is true when {A,B} = {C,D}.  It is very useful for writing pattern
%   matchers over commutative operators.  It is used more than perm is.

perm2(X,Y, X,Y).
perm2(X,Y, Y,X).

%   remove_dups(List, Pruned)
%   removes duplicated elements from List.  Beware: if the List has
%   non-ground elements, the result may surprise you.

remove_dups(List, Pruned) :-
    sort(List, Pruned).

%   reverse(List, Reversed)
%   is true when List and Reversed are lists with the same elements
%   but in opposite orders.  rev/2 is a synonym for reverse/2.

rev(List, Reversed) :-
    reverse(List, [], Reversed).

reverse(List, Reversed) :-
    reverse(List, [], Reversed).

reverse([], Reversed, Reversed).
reverse([Head|Tail], Sofar, Reversed) :-
    reverse(Tail, [Head|Sofar], Reversed).


%   same_length(?List1, ?List2)
%   is true when List1 and List2 are both lists and have the same number
%   of elements.  No relation between the values of their elements is
%   implied.
%   Modes same_length(-,+) and same_length(+,-) generate either list given
%   the other; mode same_length(-,-) generates two lists of the same length,
%   in which case the arguments will be bound to lists of length 0, 1, 2, ...

same_length([], []).
same_length([_|List1], [_|List2]) :-
    same_length(List1, List2).

%   select(X, Xlist, Y, Ylist)
% >> NB  This is select/4, not select/3 !!
%   is true when X is the Kth member of Xlist and Y the Kth element of Ylist
%   for some K, and apart from that Xlist and Ylist are the same.  You can
%   use it to replace X by Y or vice versa.

select(X, [X|Tail], Y, [Y|Tail]).
select(X, [Head|Xlist], Y, [Head|Ylist]) :-
    select(X, Xlist, Y, Ylist).

%   shorter_list(Short, Long)
%   is true when Short is a list is strictly shorter than Long.  Long
%   doesn't have to be a proper list provided it is long enough.  This
%   can be used to generate lists shorter than Long, lengths 0, 1, 2...
%   will be tried, but backtracking will terminate with a list that is
%   one element shorter than Long.  It cannot be used to generate lists
%   longer than Short, because it doesn't look at all the elements of the
%   longer list.

shorter_list([], [_|_]).
shorter_list([_|Short], [_|Long]) :-
    shorter_list(Short, Long).



%   subseq(Sequence, SubSequence, Complement)
%   is true when SubSequence and Complement are both subsequences of the
%   list Sequence (the order of corresponding elements being preserved)
%   and every element of Sequence which is not in SubSequence is in the
%   Complement and vice versa.  That is,
%   length(Sequence) = length(SubSequence)+length(Complement), e.g.
%   subseq([1,2,3,4], [1,3,4], [2]).  This was written to generate subsets
%   and their complements together, but can also be used to interleave two
%   lists in all possible ways.  Note that if S1 is a subset of S2, it will
%   be generated *before S2 as a SubSequence and *after it as a Complement.

subseq([], [], []).
subseq([Head|Tail], Sbsq, [Head|Cmpl]) :-
    subseq(Tail, Sbsq, Cmpl).
subseq([Head|Tail], [Head|Sbsq], Cmpl) :-
    subseq(Tail, Sbsq, Cmpl).



%   subseq0(Sequence, SubSequence)
%   is true when SubSequence is a subsequence of Sequence, but may
%   be Sequence itself.   Thus subseq0([a,b], [a,b]) is true as well
%   as subseq0([a,b], [a]).

%   subseq1(Sequence, SubSequence)
%   is true when SubSequence is a proper subsequence of Sequence,
%   that is it contains at least one element less.

%   ?- setof(X, subseq0([a,b,c],X), Xs).
%   Xs = [[],[a],[a,b],[a,b,c],[a,c],[b],[b,c],[c]] 
%   ?- bagof(X, subseq0([a,b,c,d],X), Xs).
%   Xs = [[a,b,c,d],[b,c,d],[c,d],[d],[],[c],[b,d],[b],[b,c],[a,c,d],
%     [a,d],[a],[a,c],[a,b,d],[a,b],[a,b,c]] 

subseq0(List, List).

subseq0(List, Rest) :-
    subseq1(List, Rest).


subseq1([_|Tail], Rest) :-
    subseq0(Tail, Rest).

subseq1([Head|Tail], [Head|Rest]) :-
    subseq1(Tail, Rest).

%   sumlist(Numbers, Total)
%   is true when Numbers is a list of integers, and Total is their sum.

sumlist(Numbers, Total) :-
    sumlist(Numbers, 0, Total).

sumlist([], Total, Total).
sumlist([Head|Tail], Sofar, Total) :-
    Next is Sofar+Head,
    sumlist(Tail, Next, Total).
...