ошибка: для просмотра требуется шаблон фиксированной ширины Spacy - PullRequest
0 голосов
/ 09 апреля 2019

Я создал настроенную модель Spacy, используя https://github.com/explosion/spaCy/blob/master/examples/training/train_ner.py и при загрузке этой модели.Это показывает ошибку - для просмотра требуется шаблон с фиксированной шириной.Я запутался в том, как решить эту проблему.Пожалуйста, помогите мне.Любая помощь будет оценена.Заранее спасибо.

output_dir = 'NLP_entity/model'
print("Loading from", output_dir)
nlp2 = spacy.load("NLP_entity/model")
test_text = "Remove from account"
#print()
doc2 = nlp1(test_text)
print(test_text)
#print()
if doc2.ents:
    for ent in doc2.ents:
        print("entity = {}, text = {}".format(ent.label_, ent.text))
else:
    print("Entities in None")

Error:
('Loading from', 'NLP_entity/model')

errorTraceback (most recent call last)
<ipython-input-1-94981b2ca322> in <module>()
      2 output_dir = 'NLP_entity/model'
      3 print("Loading from", output_dir)
----> 4 nlp2 = spacy.load("NLP_entity/model")
      5 test_text = "Remove from account".decode("utf-8")
      6 #print()

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/__init__.pyc in load(name, **overrides)
     25     if depr_path not in (True, False, None):
     26         deprecation_warning(Warnings.W001.format(path=depr_path))
---> 27     return util.load_model(name, **overrides)
     28 
     29 

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/util.pyc in load_model(name, **overrides)
    131             return load_model_from_package(name, **overrides)
    132         if Path(name).exists():  # path to model data directory
--> 133             return load_model_from_path(Path(name), **overrides)
    134     elif hasattr(name, "exists"):  # Path or Path-like to model data
    135         return load_model_from_path(name, **overrides)

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/util.pyc in load_model_from_path(model_path, meta, **overrides)
    171             component = nlp.create_pipe(name, config=config)
    172             nlp.add_pipe(component, name=name)
--> 173     return nlp.from_disk(model_path)
    174 
    175 

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/language.pyc in from_disk(self, path, exclude, disable)
    784             # Convert to list here in case exclude is (default) tuple
    785             exclude = list(exclude) + ["vocab"]
--> 786         util.from_disk(path, deserializers, exclude)
    787         self._path = path
    788         return self

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/util.pyc in from_disk(path, readers, exclude)
    609         # Split to support file names like meta.json
    610         if key.split(".")[0] not in exclude:
--> 611             reader(path / key)
    612     return path
    613 

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/site-packages/spacy/language.pyc in <lambda>(p)
    774         deserializers["meta.json"] = lambda p: self.meta.update(srsly.read_json(p))
    775         deserializers["vocab"] = lambda p: self.vocab.from_disk(p) and _fix_pretrained_vectors_name(self)
--> 776         deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(p, exclude=["vocab"])
    777         for name, proc in self.pipeline:
    778             if name in exclude:

tokenizer.pyx in spacy.tokenizer.Tokenizer.from_disk()

tokenizer.pyx in spacy.tokenizer.Tokenizer.from_bytes()

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/re.pyc in compile(pattern, flags)
    192 def compile(pattern, flags=0):
    193     "Compile a regular expression pattern, returning a pattern object."
--> 194     return _compile(pattern, flags)
    195 
    196 def purge():

/home/ubuntu/anaconda3/envs/python2/lib/python2.7/re.pyc in _compile(*key)
    249         p = sre_compile.compile(pattern, flags)
    250     except error, v:
--> 251         raise error, v # invalid expression
    252     if not bypass_cache:
    253         if len(_cache) >= _MAXCACHE:

error: look-behind requires fixed-width pattern
...