Eager Execution, tf.GradientTape возвращает только None - PullRequest
2 голосов
/ 10 апреля 2019

Я пытаюсь вычислить градиент с помощью tf.GradientTape.Когда я пытаюсь сделать это, используя в качестве входных данных потерю и Model.trainable_weights (tf.keras.Model) результат, который возвращает меня в массиве None.Что я делаю неправильно?Я использую тензор потока версии 1.13.0.

Реализованный алгоритм - это OnPolicy DQN (не обычный DQN), поэтому я не использую целевую сеть (которая используется в качестве поведенческой сети в обычном коде DQN),Итак, я хотел разграничить Ошибка, которая определяется как мини-пакет MSE Y (который является R + гамма * max_a Q (s ', a')) и Q (s, a) в коде ниже.

import gym
import numpy as np
import tensorflow as tf
from collections import deque

# ==== import below from my repo ====
from common.wrappers import MyWrapper   # just a wrapper to set a reward at the terminal state -1
from common.params import Parameters    # params for training
from common.memory import ReplayBuffer  # Experience Replay Buffer

tf.enable_eager_execution()

class Model(tf.keras.Model):
    def __init__(self, num_action):
        super(Model, self).__init__()
        self.dense1 = tf.keras.layers.Dense(16, activation='relu')
        self.dense2 = tf.keras.layers.Dense(16, activation='relu')
        self.dense3 = tf.keras.layers.Dense(16, activation='relu')
        self.pred = tf.keras.layers.Dense(num_action, activation='softmax')

    def call(self, inputs):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        pred = self.pred(x)
        return pred


class DQN:
    """
    On policy DQN

    """

    def __init__(self, num_action):
        self.num_action = num_action
        self.model = Model(num_action)
        self.optimizer = tf.train.AdamOptimizer()

    def predict(self, state):
        return self.model(tf.convert_to_tensor(state[None, :], dtype=tf.float32)).numpy()[0]

    def update(self, state, action, target):
        # target: R + gamma * Q(s',a')
        # calculate Q(s,a)
        q_values = self.predict(state)
        actions_one_hot = tf.one_hot(action, self.num_action, 1.0, 0.0)
        action_probs = tf.reduce_sum(actions_one_hot * q_values, reduction_indices=-1)

        # Minibatch MSE => (1/batch_size) * (R + gamma * Q(s',a') - Q(s,a))^2
        loss = tf.reduce_mean(tf.squared_difference(target, action_probs))
        return loss


if __name__ == '__main__':
    reward_buffer = deque(maxlen=5)
    env = MyWrapper(gym.make("CartPole-v0"))
    replay_buffer = ReplayBuffer(5000)
    params = Parameters(mode="CartPole")
    agent = DQN(env.action_space.n)

    for i in range(2000):
        state = env.reset()

        total_reward = 0
        for t in range(210):
            # env.render()
            action = np.argmax(agent.predict(state)) # behave greedily
            next_state, reward, done, info = env.step(action)
            replay_buffer.add(state, action, reward, next_state, done)

            total_reward += reward
            state = next_state

            if done:
                print("Episode {0} finished after {1} timesteps".format(i, t + 1))

                if i > 10:
                    print("Update")
                    with tf.GradientTape() as tape:
                        states, actions, rewards, next_states, dones = replay_buffer.sample(params.batch_size)
                        next_Q = agent.predict(next_states)
                        Y = rewards + params.gamma * np.max(next_Q, axis=1) * np.logical_not(dones)
                        loss = agent.update(states, actions, Y)
                        print(loss)

                    grads = tape.gradient(loss, agent.model.trainable_weights)

                    # ==== THIS RETURNS ONLY NONE ====
                    print(grads)
                    agent.optimizer.apply_gradients(zip(grads, agent.model.trainable_weights))
                break

        # store the episode reward
        reward_buffer.append(total_reward)

        # check the stopping condition
        if np.mean(reward_buffer) > 195:
            print("GAME OVER!!")
            break

    env.close()
import gym
import numpy as np
import tensorflow as tf
from collections import deque

# ==== import below from my repo ====
from common.wrappers import MyWrapper   # just a wrapper to set a reward at the terminal state -1
from common.params import Parameters    # params for training
from common.memory import ReplayBuffer  # Experience Replay Buffer

tf.enable_eager_execution()

class Model(tf.keras.Model):
    def __init__(self, num_action):
        super(Model, self).__init__()
        self.dense1 = tf.keras.layers.Dense(16, activation='relu')
        self.dense2 = tf.keras.layers.Dense(16, activation='relu')
        self.dense3 = tf.keras.layers.Dense(16, activation='relu')
        self.pred = tf.keras.layers.Dense(num_action, activation='softmax')

    def call(self, inputs):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        pred = self.pred(x)
        return pred


class DQN:
    """
    On policy DQN

    """

    def __init__(self, num_action):
        self.num_action = num_action
        self.model = Model(num_action)
        self.optimizer = tf.train.AdamOptimizer()

    def predict(self, state):
        return self.model(tf.convert_to_tensor(state[None, :], dtype=tf.float32)).numpy()[0]

    def update(self, state, action, target):
        # target: R + gamma * Q(s',a')
        # calculate Q(s,a)
        q_values = self.predict(state)
        actions_one_hot = tf.one_hot(action, self.num_action, 1.0, 0.0)
        action_probs = tf.reduce_sum(actions_one_hot * q_values, reduction_indices=-1)

        # Minibatch MSE => (1/batch_size) * (R + gamma * Q(s',a') - Q(s,a))^2
        loss = tf.reduce_mean(tf.squared_difference(target, action_probs))
        return loss


if __name__ == '__main__':
    reward_buffer = deque(maxlen=5)
    env = MyWrapper(gym.make("CartPole-v0"))
    replay_buffer = ReplayBuffer(5000)
    params = Parameters(mode="CartPole")
    agent = DQN(env.action_space.n)

    for i in range(2000):
        state = env.reset()

        total_reward = 0
        for t in range(210):
            # env.render()
            action = np.argmax(agent.predict(state)) # behave greedily
            next_state, reward, done, info = env.step(action)
            replay_buffer.add(state, action, reward, next_state, done)

            total_reward += reward
            state = next_state

            if done:
                print("Episode {0} finished after {1} timesteps".format(i, t + 1))

                if i > 10:
                    print("Update")
                    with tf.GradientTape() as tape:
                        states, actions, rewards, next_states, dones = replay_buffer.sample(params.batch_size)
                        next_Q = agent.predict(next_states)
                        Y = rewards + params.gamma * np.max(next_Q, axis=1) * np.logical_not(dones)
                        loss = agent.update(states, actions, Y)
                        print(loss)

                    grads = tape.gradient(loss, agent.model.trainable_weights)

                    # ==== THIS RETURNS ONLY NONE ====
                    print(grads)
                    agent.optimizer.apply_gradients(zip(grads, agent.model.trainable_weights))
                break

        # store the episode reward
        reward_buffer.append(total_reward)

        # check the stopping condition
        if np.mean(reward_buffer) > 195:
            print("GAME OVER!!")
            break

    env.close()
import gym
import numpy as np
import tensorflow as tf
from collections import deque

# ==== import below from my repo ====
from common.wrappers import MyWrapper   # just a wrapper to set a reward at the terminal state -1
from common.params import Parameters    # params for training
from common.memory import ReplayBuffer  # Experience Replay Buffer

tf.enable_eager_execution()

class Model(tf.keras.Model):
    def __init__(self, num_action):
        super(Model, self).__init__()
        self.dense1 = tf.keras.layers.Dense(16, activation='relu')
        self.dense2 = tf.keras.layers.Dense(16, activation='relu')
        self.dense3 = tf.keras.layers.Dense(16, activation='relu')
        self.pred = tf.keras.layers.Dense(num_action, activation='softmax')

    def call(self, inputs):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        pred = self.pred(x)
        return pred


class DQN:
    """
    On policy DQN

    """

    def __init__(self, num_action):
        self.num_action = num_action
        self.model = Model(num_action)
        self.optimizer = tf.train.AdamOptimizer()

    def predict(self, state):
        return self.model(tf.convert_to_tensor(state[None, :], dtype=tf.float32)).numpy()[0]

    def update(self, state, action, target):
        # target: R + gamma * Q(s',a')
        # calculate Q(s,a)
        q_values = self.predict(state)
        actions_one_hot = tf.one_hot(action, self.num_action, 1.0, 0.0)
        action_probs = tf.reduce_sum(actions_one_hot * q_values, reduction_indices=-1)

        # Minibatch MSE => (1/batch_size) * (R + gamma * Q(s',a') - Q(s,a))^2
        loss = tf.reduce_mean(tf.squared_difference(target, action_probs))
        return loss


if __name__ == '__main__':
    reward_buffer = deque(maxlen=5)
    env = MyWrapper(gym.make("CartPole-v0"))
    replay_buffer = ReplayBuffer(5000)
    params = Parameters(mode="CartPole")
    agent = DQN(env.action_space.n)

    for i in range(2000):
        state = env.reset()

        total_reward = 0
        for t in range(210):
            # env.render()
            action = np.argmax(agent.predict(state)) # behave greedily
            next_state, reward, done, info = env.step(action)
            replay_buffer.add(state, action, reward, next_state, done)

            total_reward += reward
            state = next_state

            if done:
                print("Episode {0} finished after {1} timesteps".format(i, t + 1))

                if i > 10:
                    print("Update")
                    with tf.GradientTape() as tape:
                        states, actions, rewards, next_states, dones = replay_buffer.sample(params.batch_size)
                        next_Q = agent.predict(next_states)
                        Y = rewards + params.gamma * np.max(next_Q, axis=1) * np.logical_not(dones)
                        loss = agent.update(states, actions, Y)
                        print(loss)

                    grads = tape.gradient(loss, agent.model.trainable_weights)

                    # ==== THIS RETURNS ONLY NONE ====
                    print(grads)
                    agent.optimizer.apply_gradients(zip(grads, agent.model.trainable_weights))
                break

        # store the episode reward
        reward_buffer.append(total_reward)

        # check the stopping condition
        if np.mean(reward_buffer) > 195:
            print("GAME OVER!!")
            break

    env.close()
import gym
import numpy as np
import tensorflow as tf
from collections import deque

# ==== import below from my repo ====
from common.wrappers import MyWrapper   # just a wrapper to set a reward at the terminal state -1
from common.params import Parameters    # params for training
from common.memory import ReplayBuffer  # Experience Replay Buffer

tf.enable_eager_execution()

class Model(tf.keras.Model):
    def __init__(self, num_action):
        super(Model, self).__init__()
        self.dense1 = tf.keras.layers.Dense(16, activation='relu')
        self.dense2 = tf.keras.layers.Dense(16, activation='relu')
        self.dense3 = tf.keras.layers.Dense(16, activation='relu')
        self.pred = tf.keras.layers.Dense(num_action, activation='softmax')

    def call(self, inputs):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        pred = self.pred(x)
        return pred


class DQN:
    """
    On policy DQN

    """

    def __init__(self, num_action):
        self.num_action = num_action
        self.model = Model(num_action)
        self.optimizer = tf.train.AdamOptimizer()

    def predict(self, state):
        return self.model(tf.convert_to_tensor(state[None, :], dtype=tf.float32)).numpy()[0]

    def update(self, state, action, target):
        # target: R + gamma * Q(s',a')
        # calculate Q(s,a)
        q_values = self.predict(state)
        actions_one_hot = tf.one_hot(action, self.num_action, 1.0, 0.0)
        action_probs = tf.reduce_sum(actions_one_hot * q_values, reduction_indices=-1)

        # Minibatch MSE => (1/batch_size) * (R + gamma * Q(s',a') - Q(s,a))^2
        loss = tf.reduce_mean(tf.squared_difference(target, action_probs))
        return loss


if __name__ == '__main__':
    reward_buffer = deque(maxlen=5)
    env = MyWrapper(gym.make("CartPole-v0"))
    replay_buffer = ReplayBuffer(5000)
    params = Parameters(mode="CartPole")
    agent = DQN(env.action_space.n)

    for i in range(2000):
        state = env.reset()

        total_reward = 0
        for t in range(210):
            # env.render()
            action = np.argmax(agent.predict(state)) # behave greedily
            next_state, reward, done, info = env.step(action)
            replay_buffer.add(state, action, reward, next_state, done)

            total_reward += reward
            state = next_state

            if done:
                print("Episode {0} finished after {1} timesteps".format(i, t + 1))

                if i > 10:
                    print("Update")
                    with tf.GradientTape() as tape:
                        states, actions, rewards, next_states, dones = replay_buffer.sample(params.batch_size)
                        next_Q = agent.predict(next_states)
                        Y = rewards + params.gamma * np.max(next_Q, axis=1) * np.logical_not(dones)
                        loss = agent.update(states, actions, Y)
                        print(loss)

                    grads = tape.gradient(loss, agent.model.trainable_weights)

                    # ==== THIS RETURNS ONLY NONE ====
                    print(grads)
                    agent.optimizer.apply_gradients(zip(grads, agent.model.trainable_weights))
                break

        # store the episode reward
        reward_buffer.append(total_reward)

        # check the stopping condition
        if np.mean(reward_buffer) > 195:
            print("GAME OVER!!")
            break

    env.close()

1 Ответ

1 голос
/ 29 апреля 2019

Попробуйте изменить функцию обновления на:

def update(self, state, action, target):
        # target: R + gamma * Q(s',a')
        # calculate Q(s,a)
        q_values = self.model(tf.convert_to_tensor(state[None, :], dtype=tf.float32))
        actions_one_hot = tf.one_hot(action, self.num_action, 1.0, 0.0)
        action_probs = tf.reduce_sum(actions_one_hot * q_values, reduction_indices=-1)

        # Minibatch MSE => (1/batch_size) * (R + gamma * Q(s',a') - Q(s,a))^2
        loss = tf.reduce_mean(tf.squared_difference(target, action_probs))
        return loss

Я думаю, что при вызове .numpy () в функции предикта лента теряет привязку к весам.(Я не проверял свой ответ)

...